Intro

All sounds in sm64 are processed in what are known as sequences. Sequences are
binary packed music notation files that are similar to midi, and are written in what's
known as Music Macro Language (MML). Sequences are generally referred to as m64
files, though other file types are used such as .com or .bin. This is because the same
sequence file type is used in many other games, so other file names are used in those
communities. For this tutorial | will refer to the entire sequence file as an MML or M64
file, and to the actual music part of it as a sequence (will make sense later).
Along with MML files, there are two other important audio formats that | won't go over in
detail, which are audio banks and audio samples.
This tutorial is made under the assumption you have a basic working knowledge of how
to make MML files with seq64, and is meant to supplement technical knowledge of how
MMLs work in the game, as well as how to do more advanced techniques and effects.
If you are completely new to making music in sm64, | recommend you watch one of
these video tutorials:

e https://www.youtube.com/watch?v=g-niL eto3yU

e https://www.youtube.com/watch?v=E8-RKAGSw8M

MML Format

There are three objects that make up the MML file hierarchy, each one corresponding to
a part of the sequence.

At the top level is the sequence obiject itself, which contains all data for the sequence.
Everything declared in this object affects all other objects in the MML file, and the
sequence object's most common use is declaring the location of its child objects,
channels.

Channels are containers for holding effects and event info like which instrument to use,
or how loud to play the notes. If you are familiar with midi, the channels here are very
similar. There can be up to 16 channels in one sequence. Channels contain the location
of the final object used in sequences called layers.

Layers are the smallest part of a sequence and they contain the actual notes played in
the sequence. There can be 4 layers activated at one point in time per channel, and
each layer can only play one note at a time.

So to recap, a MML file is made from the sequence object, which can hold up to 16
channel objects, each of which can hold 4 layer objects. Layers hold the notes that are
played, channels hold the effects, instruments and other data about how to play those
notes, and sequences hold the info and data that affect all the channels.

https://www.youtube.com/watch?v=g-niLeto3yU
https://www.youtube.com/watch?v=E8-RKA6Sw8M

Sequence File Representations

M64 is a packed binary format, which means that it is not realistic to expect humans to
be able to read and edit them. In order to do so, we use an intermediary format called
MML (really just assembly). This format is not really intended for music editing, but it
provides a plain text way of accessing the events which is fine for just tweaking the file.
If you intend to edit a sequence seriously, convert it to a midi, or hopefully you have the
midi it started with already.

The best way to get an MML is using seq64, which is a program for converting between
binary, MML and midi formats. MML formatting is made entirely up using macros, which
all correspond to a set of bytes in the binary version of the sequence.

When speaking about how sequences are constructed and MML events, it's best to use
the MML macros to describe it. The macros will map to midi, but not 100% the same, so
to be accurate you have to always describe how the MML works and how we try to
represent that in midi files.

Understanding Sequence Macros

Macros are instructions to an assembler to do one or several operations, with one
named instruction that is not part of the default set. MML is made up entirely of these,
so MML is basically assembly with only custom instructions. This is a lot simpler than it
seems, as the instructions are named to what they functionally do.

Macros will always follow the format of Name arg1, arg2 etc. The name will tell you the
action, and the arguments will tell you what data the action will use. Ex. seq_settempo
0x80 will set the sequence tempo to be 0x80, or 128. What the values mean will depend
on each macro, in this case it is in bpm, beats per minute.

_start:
seq_setmutebhv
seq_setmutescale
seq_initchannels
seq_setvol

tseco:
seq_startchannel tsec@ chno
seq_startchannel tsec® chnl

seq_startchannel tsec@_chn2
seq_startchannel tsec@ chn3
seq_startchannel tsec@ chn4
seq_startchannel tsec@_chn5
seq_startchannel tsec@ _chné
seq_startchannel tsec® chn7
seq_startchannel tsec@_chn8

seq_startchannel 9, tsec® chn9
seq_startchannel , tsec@_chnle
seq_startchannel , tseco chnll
seq_settempo

seq_delay

seq_jump tseco
seq_disablechannels OxOFFF
seq_end

This is a sequence header that was generated by seq64. The setup here is simple,
there is a start, a section, tsec0O, and then the sequence ends.

You can functionally tell what each macro does from the name, for example seq_setvol
120 sets the sequence volume to 120, seq_startchannel 0, tsecO_chn0 defines where
channel O is. It is a lot to take in all at once, but you won’t have to read and look through
all of the macros to understand a sequence, you will just have to know which specific
ones to look for, which | will cover in a later section. Though if you are interested in
learning all of these, you can find a list of all macros in sm64 decomp at this link:
seq_macros.inc

MML Effects and Events

Effects are processes that are applied to every note while they are being played.
Vibrato, volume, transposition, reverb and panning are the main effects used.

In general, effects are applied on layers or channels exclusively, and only affect notes
allocated to that object.

Events are the driving force of MML. Every processed macro is an event, and each one
will declare some action for the sequence to take until it is ready for the next event. The
most common event is the note event, which simply just plays a note. Events can
usually be applied on multiple objects, such as the volume change event which can be
used in sequences and channels.

Events map very similarly to events in the midi standard. Usually, if there is an event in
the MML format, then there is an equivalent in midi.

Important Effects and Events

e Volume - Available in channels and sequences, determines loudness of notes
e Instrument - Determines what instrument to use for notes. Used per channel or
layer.
Panning - Determines left/right mix of sound. Per channel or layer.
Transposition - Shifts all notes in semitones. Available in all objects.
Pitch Bend - Shifts note frequencies in cents. Used per channel.

https://github.com/n64decomp/sm64/blob/master/include/seq_macros.inc

Tempo - Determines playback speed. Set in sequence object only.

Vibrato - Continuous change in pitch back and forth over a range. Can alter the

rate and amount of pitch change, channels only.

e Reverb - Simulates sound reverberating as if played in a concert hall, sets the

wet/dry mix or echo. Used per channel.
There are more effects and events than these, but these are the ones you should focus
on to start with. Events can usually be used in multiple objects, and will sum together.
For example a transposition on a note will be the layer's transposition plus that layer's
channel transposition plus the sequence's transposition. When making sequences, try
to pay attention to these effects.

Instruments and Notes

Now that we know how events and effects are used in sequences, we can talk about the
most important ones of all, instruments and notes. Primarily, these will be the most used
events. Instruments will determine how notes sound, and notes will determine how that
sound is played.

Instruments are decided by an index in an instrument bank. SM64 has 37 different
instrument banks, though most of them have repeated instruments within them or are
used for sound effects.

Instruments

An instrument itself is simply a sound sample (or samples) with info on its sounds. It
tells the game which notes map to which sound samples, and how they're tuned. An
instrument usually has one sample, but can have up to three different ones. To find out
how instruments are mapped, you can use an age old hacking resource with all the
instrument lists: Inst List. Or you can read the source inside of sm64 decomp. In
decomp, if you navigate to /sound/sound_banks/ you will find all of the banks as json
files. Json is not the file format the Nintendo devs used, but it's what the people who
made decomp decided on. As a brief explanation on JSON, it can simply be thought of
as a tree of information; an object full of variable definitions that can branch to more
variable definitions. JSON variables can be numbers, strings, lists or dictionaries. A
dictionary is a set of named pairs, and the root object of a JSON is a dictionary in
banks.

Banks

Banks are a collection of instrument definitions, they are most easily accessible through
the JSONs inside of the sm64 decomp source code. At the root of our bank JSONs we
see a curly brace, this means our root data type is a dictionary. At the root there are five
keys: date, sample_bank, envelopes, instruments, and instrument_list.

https://docs.google.com/document/d/1WbFM2MeP15NDMhYS9yA2Nv2xQEGljtMuQrWrHtGTWAc/edit

Envelopes simply describe how the volume of the sample changes over time, it's made
up of pairs of 2 values, the first is a time, the second is a volume.

Sample_bank tells us what bank of sample files will be used for this sound bank. You
can only use one, and in decomp this corresponds to the name of a folder in
/sounds/samples/. For most sound banks, it uses “instruments”, though some other
banks are used, for example “bowser_organ” is one such other bank. The consequence
of this is that if you wanted to make a custom bank, you could not combine bowser
organ sounds with default instrument sounds.

Instruments define what actual instruments we will be using. Instruments themselves
are dictionaries, and they have several potential values. The important ones are:
release_rate, envelope, sound, sound_hi/lo, normal_range_hi/lo. Envelope defines what
envelope we use for the inst, and sound what sample we use. Sound hi/lo and normal
range hi/lo will change what sample is used based on the note. Lo is the bottom of the
range, and hi is the top of the range. Sound is what will be used between them.

To add some detail to ranges, notes start at 22 off from where gen midi starts, so the
bottom is note 22. The lo range tells us where it goes up to, so for a value of 28, it
means the sample goes from 0-27, which is 22-49 in gen midi. The hi range tells us
where it starts after. So if the hi was also 28, it means it starts at note 29, or 51 in gen
midi. Another way of viewing it, is that the lo and hi tell us the boundary, but are not
inclusive, so sound will take all values between lo and hi inclusive. Ex. If lo = 14 and hi =
27, then sound will then have notes 14 to 27, and you can add 22 to convert to gen midi
notes.

Instrument list is finally how we access instruments from the MML. When you define an
instrument to be used for notes, you just give the channel a number. That number
corresponds to the number in this list. Each channel can choose one bank, and from
that bank we choose one inst for our notes to play. If there is a null in this list, it just
inherits the last instrument defined in the list.

Percussion

On top of instruments, there is also percussion which is considered separately.
Percussion requires many different sounds so it is not declared the same way in game;
it has its own special mapping. Each bank has one set of percussion, which is always
on instrument 0x7F. Percussion will be defined in the bank JSON as “percussion” inside
the instrument dictionary. The big difference is that percussion defines a sound for each
individual note and how each note is tuned, instead of using a set of samples and a
predefined note tuning table.

Waves

On top of instruments, there are basic wave type instruments that you can always use in
any bank. These are sine, square, triangle and sawtooth waves. These are generated

instruments, and don’t use sound samples. To use them, you need to use instruments
0x80 - 0x83. Unfortunately, you cannot select these instruments in midi, so you will
always have to set these manually yourself in MML format. Since these are pure waves,
they can be grating or hard to use properly, but if used well they grant a very unique
sound, play around with them when you can.

saw (80)

tri (81)

sine (82)

square (83)

Notes

Notes are events inside a layer that tell the sequence player to play an instrument at a
given pitch and volume for a certain amount of time. You can only have one note at a
time in one layer, and they play one after the other inside the layer (rests can be also in
layers though). A note event has 4 parameters it uses: duration, volume (or velocity),
pitch and next event time. Once a note event is reached, it will play the note over the
duration supplied at the given volume, and then wait until the next event which is given
in a timestamp on the current note event.

Notes pitches are determined using a frequency table. To play a note at a certain pitch,
the game multiplies the playback rate by a factor to simulate an increased frequency. A
change of one octave is changing the pitch by a factor of 2. Going up is doubling the
speed, going down is halving the speed. This not only changes the pitch but also the
rate of sample playback. If you have a voice sample, a high pitch will sound like they are
talking very fast.

When using effects or instrument tuning that changes the pitch, it will simply multiply the
lookup value for pitch for that note by the effect frequency. For example if | pitch bend
by 127, | increase pitch by one octave, and multiply my note frequency by an additional
2X.

There are several note event types, but all of them do the same thing described above,
the only difference is how they are encoded into the file, which is not something you
should worry about.

Sequence Parsing

Sm64 updates audio 240 times a second, or 4 times a frame at 60 ticks. During each
audio update, all sequences are updated. There are three sequence channels in sm64:
background, event, and sfx. Background is meant for the level music, and event is
meant for songs played temporarily during events, such as the star collect jingle.

Each sequence channel can have one sequence playing at a time, and can use one
audio bank at a time per channel. Every update, sequences are parsed one at a time,

then in each sequence all of the channels are parsed, and then in each channel all
active layers are parsed.

Parsing of each object works the same. The game will read the first macro in the MML
data stream for that object and execute its function, and then keep doing so until it
reaches a macro that tells it to stop. For sequences and channels this is done with a
delay macro, or an end/disable macro. For layers, it is done with a play note event, or a
delay, or an end macro.

In general, a sequence will run through all the necessary setup at the beginning and
only be left with layer parsing as it goes through notes. A sequence needs only to set up
things like volume and tempo, and then it can wait with a long delay until it needs to
change something; channels can do the same. In this circumstance, the sequence
parsing will see that the sequence is waiting, look at channels, see they are waiting, and
then it will parse the layers which will either execute a new note, or also be waiting, and
then it will continue playing active notes.

The consequence of this is that sequences setup and fill a buffer of notes to execute,
and then idle until called upon again. This makes active management of effects difficult
via the sequence and channel objects. In order for there to be changing effects, events
need to be pre programmed to execute at certain times, much like note events need to
play at a certain time in order to form the correct melody. This also means you have to
run through all events in order, you cannot pick up at any spot in the sequence, unless it
is a pre-programmed section to start at.

Creating Practical Effects for Songs

So now that we understand the general structure of MML and how it is read, we will
learn about how to actually use it. | will be going over everything here in the MML
format, but also briefly cover how to edit these effects inside of your midi if you’re using
seq64 2.x (1.5 for few effects).

Midi

As a brief mention, | will talk about how seq64 understands midi and how midi knows
what it's actually doing to play notes. Everything in midi is controlled by events, very
similar to what | covered earlier about MML. The difference in midi is that all events are
covered inside of channels besides for what would be the equivalent of the sequence
object, which really only contains the tempo and time signature (TS doesn’t exist in
MML though).

So this means that notes exist inside of channels and there can be as many at a time as
you could potentially fit in a musical scale and these exist alongside all the other
channel events. The important part here is how other events are edited inside of midi
files.

If you use any event besides for basic note_on, note_off, program_change, and
pitch_bend it will be in what is called a CC event, or a midi continuous controller. There
are 128 midi CC events and each event has a 7 bit argument field, so you can have
arguments up to 127.

As an example, if you want to define the volume for your channel, you can place midi
CC 7 - Channel _Volume. You can see what midi CC events are mapped to MML events
by looking at the XML file you load for seq64. It is even more clear in seq64 2.x as the
comments line will usually tell you what midi CC to use for the corresponding macro.

W SECH4 V2 = [1

Binary format (ABI) seqbd - sequence ABI editor n

1 - SMe4 decom . Audioseq / Nintendo 64 Music Macro Language
J Edit... ABI definition file: 1 - SM64

2 - SMe4 EU
: reverb / fxmix
: updatesperframe
Import MIDI Export MIDI Povi bfreq / wvi t_)p1 tch
: vibdepth vibdepth

MIDI Import ! release / release
v | Use .pref file (if exist) Mute Behav. J cem"%] ope / envelope

; : ctp / strans
¥ | Smart Loop Mute Scale i /

| Relative Addrs Default Mst.Vol.

| FL Studio compat 4

Optimizer el : Ccexp ; evoliume

: vibfregenv /

! vibdepthen vibdepthmv
| Only Vvels 5 Vol/Pan : vibdelay / vibdelay
NEYT Gates |3 Pitch e ler AR :

v | Command Names Valid in
Loops g |1 Other

¥ | Calls Merge Close: Quantize:

Community: |cvol | Seq Header / Group Track
MIDI Export Canon: ¥ | Chn Header / Sub Track
v | Orig Inst/Drums PPON 48x: : Canon (Old): |svolume | Track Data / Note Track

| GM, drums ch 10

| GM, drums multi Cmd: |DF |to Action: | CC or CC Group

Comments: Set channel volume scale factor (MIDI range 0-127, but
accepts throvagh 255 and will go louder). This corresponds to
MIDI volume (CC 7).

Params:

Import .mus Export .mus : :
Volume Add Edit Parameter

.mus dialect (for export) Del Name:

v | Community | Canon | Canon (Old) Meaning: ~ | CC:
Style:

¥ | Music | Technical / SFX | Cmd Offset | Fixed
Up (none)
| Constant | Variable
Dn

Import .com/.aseq Export .com/.aseq

Here in seq64 2.1 | open the XML file by choosing sm64 and hitting edit, then | just
navigate to the volume macro and read the comment to see which midi CC | need to
edit to change how the volume will be translated. You can change this by using the Ul
options at the bottom under the comments and saving the XML if you want to as well,
but currently it is mapped quite well. Keep this in mind as | cover effects.

Channel Effects

Effects that | covered in MML Effects and Events can be added easily to channels in
MML format, but it can be confusing or unclear on how to add inside the midi itself so
that it appears during import. Understanding how to do this will be the key to tuning your
songs so that they sound good, and for most applications this is all you will need to
understand.
As | mentioned earlier, MML events are converted by using equivalent midi CC events.
So in order to have the effects you want present, you need to place the equivalent midi
CC events in the correct place. For very common events, like volume and present, you
will usually have direct control in the Ul, and can set it there, but for less common ones
like reverb, you need to place an event. Every midi sequencer should have an ability to
do this. | will cover Anvil Studio as it's the most commonly used one for sm64.

Inside Anvil Studio, you need to open up the composer, or piano roll views and select a
time where you want your effect to be present from.

File Edt Track

<

9«4 =

| Track Name
Track 1
Track 2
Track 3
Track 4
Track 5
Track 5
Track 6
Track 6
Track 7
Track 8
| hh

c

sn

fE===

View | Practice Help =

Mixer

Composer (Staff Editor)

Piano Roll Edtor
Tablature

Note Propetties

Evert List

Lyrics in @ window withaut nates...

Track Comments

Synihesizers, MIDI + Audia Devices

Latency of MIDI + Audio Devices

CPU Performance

Metronome + Tempa Settings

Audio Volume Controls

Ring tone (SP-MIDI) properties

Postion of track’s highest polyphonic demands

Performer
Audio Lab

Installed Accessories

Update Anvil Studio ffree)
Catalog of optional Accessories
Show Help at bottom of screen
Options

New cus | =118/ B
co s G x| B SR
~ 37 i Y
2 2| 1)o7 el i Q)
Bus Out | Device Channel | Instrument Vol LR Balance fx Time1 2 3 456
General MIDI - VirtualMIDISynth #1 1 Celesta J_I]_I
General MIDI - VirtualMIDISynth #1 2 Electric Gi J_I fo
General MIDI - VirtualMIDISynth #1 3 Clav 71'77”7&
General MIDI - VirtualMIDISynth #1 4 P Organ u fo
General MIDI - VirtualMIDISynth #1 5 String Ensemble 1 7“**]_'7 o
General MIDI - VirtualMIDISynth #1 12 Xylophone 71177”7 o
General MIDI - VirtualMIDISynth #1 13 Xylophone 7”**”* o
General MIDI - VirtualMIDISynth #1 13 String Ensemble 1 e T
General MIDI - VirtualMIDISynth #1 7 Tubular Bells i} il
General MIDI - VirtualMIDISynth #1 2 Tubular Bells il; &
General MIDI - VirtualMIDISynth #1 in Music Box 1t 1t b |
General MIDI - VirtualMIDISynth #1 1 braph: il IF
General MIDI - VirtualMIDISynth #1 10 drums | Drums il Ik

=
bl
|

Now once you are here, you go into the Edit menu and select Insert Midi Event...

ﬁ Route_203 - Track hh - Anvil Studio - Compose - version 2020.12.03 64-bit

File Edit Track View Practice Help =
Undao Cirl+Z
New cue =118 @
< Redo 5 terpe k <
Cut Ctrl+X @ D
JLLLLLLL L
44 Copy Cirl+C
a7 Paste Mix On Bus Out | Device
Tra Paste Insert CtrlsV on General MIDI - Virtualh
Tra . on General MIDI - Virtualh
Tra Paste Special... on G 1 MIDI - Vi n
Tra Delete Selection fincluding time: Del on General MIDI - Virtualh
Tra el Selection {not time). Make selection silent on General MIDI - Virtualh
Tra Mo o anothertrack... an General MIDI - Virtuall
Tra e on General MIDI - Virtualh
Trg - on General MIDI - Virtual b
Tra AR on General MIDI - Virtuall
Tra Select Al Cirl+A on General MIDI - Virtualh
| hh Cony Selaction from All Tracks on General MIDI - Virtualh
c Ry seEeten e = on General MIDI - Virtualh
sn on General MIDI - Virtual b
Delete Selection from All Tracks...
Insert Rests into All Tracks...
Insert Motation 3
@| Insert MIDI Evert... [————— ——
e S s e e S s s s A
i 1 1 1 1 1 1 1 1 1 T 1
Change Volume or Pitch, Move or Delete notes... T oy
Set Record+Play Stat+End Times...
Stretch / Compress time
Repeat selected notes in a Loop...

Now you will get a prompt telling you to select the kind of event and the value. Here is
where we will take a break, and look to understand where to find our mappings to the
MML effects. First | will start with seq64 1.5.

MML event mappings in SEQ64 1.5

All of the mappings to MML events are controlled by the XML file you decide to import.
For seq64 1.5, this mapping is more crude, so | took it upon myself to make a more
accurate mapping, and you can find that XML file here sm64 info XML. To view what
this XML does, you need to load it via RomDes->Load... and then go to the AudioSeq
tab. In the top left corner there is a Command Editor window that has all of our MML
macros listed by their MSB or identifying byte and a text description of what they do.
Click one of these commands, and below it you will see the encoding of how seq64
knows when to use it. The key components are: Valid In, Action, and Parameters.

https://drive.google.com/file/d/1z2i0-AxysPHTUWIPkmsyw0GbPVdXuBoD/view?usp=sharing

: Chn Headset Fx (No Action)
: Chn Sustain {No Action)

: Pitch Bend (Chn Pitch Bend)
4: Effect Level (No Action)
7: Chn Vibrato Rate (Mo Action)
: Vibrato Extent (Chn) (Chn Vibrato)
: Chn Release Rate (No Action)
A: Set Envelope (Chn) (No Action)
: Transposition (Chn Transpose)
: Set Panmix (No Action)
: Chan Pan (Chn Pan)
: Chan Velume (Chn) (Chn Volume)
: Chan Vol Scale (No Action)
: Channel Pri (No Action)
00 to 3F: Note , V, G (Track Note)
40 to 7F: Note w/ T, V (Track Note)
80 to BF: Note G (Track Note)
CO: Trk Timestamp (Timestamp)
C2: Ly Transpose (Layer Transpose)
C4: Legato On (No Action)
- — Valid in
Name: | Chan Volume (Chn) e
Command: |DF to ¥ | Chn header

Action: | Chn Volume ~ | Track data

Parameters: Edit Parameter
0 Name: |Volume
Data source:
| Cmd Offset (no data)
| Fixi ;
Rz length | 1 (dec)
| Variable

Meaning: | Value ~

Add (dec): | D Multiply: | 1

Valid in will tell you what objects to place the event if it finds it, though really this is only
useful for placing events yourself, midi only has channel events, so it will only detect
channel events. Action will tell you what action it is looking for, this is the event type.
Chn Volume is a channel set volume midi event. There are others, like Chn Effects, or
Chn Vibrato which is used for reverb and vibrato respectively. The parameter window
will tell you how it interprets the value of the midi CC, and what other data you will have
to put in yourself.

There is no direct indication of what midi CC event numbers to use in this version of
seq64, you have to go off of naming, which is good enough for the basic effects. If you
use the XML | posted earlier, everything should be set up to be intuitive, so you
shouldn’t have to edit anything or really check these. Now in our example, if we wanted
to add in reverb to our channel, we would add event 91, ReverbSendLevel (naming
potentially different in diff programs).

MML events in Seq64 2.1

Midi event mapping in seq64 2.1 is much more direct than in 1.5 as this was made with
full exposure to the source, so all of the macros are accurate and are mapped to just
one midi CC that matches in function. That said, | personally find the naming confusing
and don’t like the way it doesn’t match sm64 decomp, so | made my own mapping that
matches it, which you can find here sm64 decomp XML. Place this XML in the abi folder

https://drive.google.com/file/d/1BFOkJP1Ok67ySiFJNOS-VcbC9wAxbj8W/view?usp=sharing

included with your download of seq64 2.1. To expose the macros, select the appropriate
XML file in the top window called Binary Format (ABI) and then hit Edit...
i SEO64 V2.1

Binary format (ABI) Debug output:

1-5Me4
2 - 5Me4 EU

Import MIDI Export MIDI

MIDI Import
+ | Use ,pref file (if exist Mute Behav. | 20

Now if you click any of these commands, you can look at Action, Params and
Comments to figure out how it maps. If it is an event controlled by a midi CC (most are)
then you should see something like this.

: chan_setvolscale / evolume

. chan_setvibratoratelinear / vi...

: chan_setvibratoextentlinear / ...

: chan_setvibratodelay / vibdelay

: chan_dyncall / sr_calltbl / ct...

: chan_unreservenotes / deallocvoice

: chan_reservenotes / allocvoice

: chan_hang / halt
Command Names Valid in
Community: | chan_setvol | Seq Header / Group Track
Canon: v | Chn Header / Sub Track

Canon (Old): |svolume " | Track Data / Note Track

Action: | CC or CC Group ~

Set channel volume scale factor (MIDI range 0-127, but
accepts through 255 and will go louder). This corresponds to
MIDI volume (CC 7).

Add Edit Parameter

Del Name: Volume

Meaning: | CC

| cmd Offset [v] Fixed
length 1
| Constant | Variable

Action is wset to CC or CC Group, and our parameter tells us which CC to use. Here we
can see that the volume is midi CC 7. Commands in this version can map to multiple
CC, which is necessary for some more complex effects, | will go over those when |
cover those effects. You can also see in the comments a good description of how this
works, and the midi CC it will be using.

Common effects and their midi CCs
) Reverb - CC event 91 - Up to 127 in midi, but takes 255 in MML

Vibrato Range - CC event 77 - Value of 4 per note of range

Vibrato Rate - CC event 76 - Default is 32, range from 2048 - 8 ticks per cycle
Sustain - CC event 64 - Off/On control in midi but value control in MML

Program Change - CC event 129 - Sets the instrument, special midi event.

Bank Change - CC event 0 - Sets the bank (2.1 exclusive)

° Release rate - CC event 72 - Must be after program change to work. Lower value
is slower release.

Pitch Bend - | do not recommend adding pitch bends via channel events, but
otherwise, it is a special one, not a CC event.

Custom Loop Point

A loop point is made by separating all the events before and after a certain time, and
then jumping back to that point in time at the end instead of the beginning. The only
practical way to do this is using seq64 and editing the midi. Seq64 detects the points to
separate events by using channel markers. Channel markers are meta midi events, and
depending on your program how you define it is different, though the general idea is you
want to select a point in your channel, and click add midi event in a menu somewhere,

and then name the section “Section X” where X is the number of your section.
o

Fle Edt Track View Practice

<) a2 b (34 LA R 0:56:041
W= prwm——————— | e 28:06:240

[Track Name Type On Section 2| Channel | Instrument Vel LR Balance
ele guitar Instrument on. 2 I

=
a

2 24 2 28 30 ~

[oboe ! alto sax Instrument | on Xylophone

Tubular Bells

clari /hem nstrument | on
fute accoridon Instrument | on Cancel
str Instrument | on GEneral M-

glock Instrument on General MIDI - VirtualMIDISynth #1
marinba sir nstrument on General MIDI - VirtualMIDISynih #1
wemelo / grand violin nstrument on General MID) - VirtsaIMIDISynth £1
synih bass nstrument on General MID - VirtsaIMIDISynth £1

e @ o

Xylophone —

psi
Contrabass
Guiter Harmonics
Fizzicato Strings
marimba pizzi Instrument | on General MIDI - VirtualMIDISynth £1 1 Acoustic bass
drum Instrument | on General MIDI - VirtualMIDISynth #1 10drums |Drums

[y

@

o o o Ed Ed

=====:T=:=;

1+ Note Range__] | Show Tracks... | Edit Samples Insert Mode [Lock Score

Piano Rol ~ | Mixer |Time 6/4 ~ | Gid 1/16note Singe ~ MNote 1/2nole | Sngle ~ 3 |l mr == & & & Note Vol

In anvil studio, you can do this by selecting where you want in the song and clicking the
new button next to Cue.

Now inside of your MML file, you will notice you have multiple sections, this is signified
by a label in the sequence header like this:

_start:
seq_setmutebhv
seq_initchannels 0x001F
tseco:

seq_startchannel 6, tsec® chne
seq_startchannel 1, tsec@ chnl
seq_startchannel 2, tsec® chn2

seq_startchannel tsec® chn3
seq_startchannel tsec@_chn4
seq_settempo
seq_delay

tsecl:
seq_startchannel tsecl chno
seq_startchannel tsecl chnl
seq_startchannel tsecl _chn2
seq_startchannel tsecl chn3
seq_startchannel tsecl chn4
seq_setvol
seq_delay
seq_jump tsecl
seq_disablechannels
seq_end

Our sections in this sequence are tsec0 and tsec1. Now to loop to my custom point, |
change seq_jump to point to tsec1 instead of tsecO which is the default loop point.

Changing Banks

You can use multiple banks in a single sequence. This is done by editing the
gALBankSets table, which is better known as /sound/sequences.json. To add an extra
bank, you need to to just add to the list after the name of your sequence, so you would
replace "03 level grass": ["22"] with "03 level grass": ['22", “23”] to use both banks
0x22 and 0x23. This is not possible in Rom Manager.

By default, the first bank in the index is used for all channels. To use a different bank,
you need to use the chan_setbank, <bank> macro. After you set the bank, you need to
set the instrument. If you don’t it will default to instrument 0.

tsec@ _chno:
chan_largenoteson
chan_setlayer 0, tsec® chne _lyo
chan_setbank 0x01

chan_setinstr
chan_delay
chan_end

This is a typical channel for a sequence, the only difference is | set the bank before
choosing my instrument. Layers will always use the channel's instrument unless defined

otherwise, so you can update the instrument in the channel anytime and it will affect all
layers. The bank | choose will be the second one in the list defined in sequences.json. If
this were the above sequence, this channel would move from using bank 0x22 to bank
0x23.

Tempo Changes

Tempo is controlled across the entire sequence. Any change made here will be a
sequence event. To change the tempo, you should use seq_settempo, <tempo>, or you
can insert a tempo event in the song properties. If you use anvil studio you can click the
tempo button and it will prompt you to edit a new bpm at the selected time.

In MML you can also increase tempo by a certain amount. This is done by using
seq_addtempo, <increase>. The point of this macro is to increase the tempo by a
specific amount after a condition is met. It is important to note that this is a constant
increase, not an incremental one. If you use this macro multiple times it will only
increase tempo by the last macro used.

One interesting thing to do is to increase the tempo after looping a certain number of
times. Here is a typical way in which you would do such a thing in MML.

_start:
seq_setmutebhv
seq_initchannels

tseco:
seq_setvol
seq_startchannel tsec@ chno
seq_startchannel tsec@_chnl
seq_settempo
seq_delay

tsecl:
seq_loop
seq_startchannel tsecl chn@
seq_startchannel tsecl _chnl
seq_delay
seq_loopend
seq_addtempo
seq_jump tsecl
seq_disablechannels
seq_end

So this is a pretty standard header, but | have modified the way it loops so that instead
of simply jumping back to tsec? indefinitely, it will loop 5 times, use seq_addtempo and
then jump to tsec1. This means after 5 loops, it will increase in speed, and then it will
remain at that higher speed indefinitely.

Multi Layer Sound

When you want to fill out a sound, you add in layers, or in more literal terms, you double
or triple the sound and alter it slightly so it can resonate. This is easy enough to do in a
midi sequencer, just clone a channel, and then alter the volume/pan/instrument and you
have something more full, and you can tune it how you want. As an example, a recent
port | made had this backing track doubled and altered.

(4 = | [e Lo] 5 | || 1| | B
[Track Name Type On | Bus|@avice Channel| Instrument Vol URBalance | |Timg 20 22 24 26 28 30 32 34 3 38 40 42
Flute Instrument | on General MIDI - VirtualMIDISynth 1 |1 Electric i L 1t i [bk
Flute Instrument | on General MIDI - VirualMIDISynth 1 |15 Harpsi 1t It
Contrabass on General MIDI - VirtualMIDISynth #1 |4 Accord &
Trombone Instrument | on General MIDI - VirtualMIDISynth #1 |2 Tremolo Strings —I—& I e
Harp legato Instrument | on General MIDI - VirtualMIDISynth #1 |3 Clav — & B0] B TN T AN SR 1
Stee! String legato Instrument | on General MIDI - VirtualMIDISynth #1 |7 Synth Bass 1 1 1 PUPRININPR VPV PNV PR
Synth Bass Instrument | on General MIDI - VirtualMIDISynth #1 |6 Viola 1 I 0) Y A
Saw Lead Instrument | on General MIDI - VirtualMIDISynth #1 |8 Cello il 11 (0 R
#|Saw Lead Instrument | on General MIDI - VirtualMIDISynth #1 |14 yloph 1——1t i IR
Piano Instrument | on General MIDI - VirtuaIMIDISynth #1 |3 Electric Piano 1 —I— i th)ih
bass Instrument | on General MIDI - VirtualMIDISynth #1 |5 Fretless bass il I
snare Instrument | on General MIDI - VirualMIDISynth 1 |13 Orchestral Strings 1k I o
hh on General MIDI - VirtualMIDISynth 1 |11 Music Box 1t il fic
e Click here to make this the active track. Click again to change this track's name. Vou can also drag this track up or down in the list. fF——Ill————lI—f«
~ Q 4 i Q = -« i Q = Q
vl T T T T T T | T ¥ T T T T T T I s] T o T T T
r 4 T T T T T T T T T T T T T T T T |] T T T T
Ty T T T T T T T T T T e] T T T e] T T T T T T
v I I I I I I T I I X o] I I I | X o] I I I I I I I I
Yy o =3

T T T T &3 | T T T T T T T T T T T T T T T
T T
T T
T T T T T

You can see that | altered the volumes, pan and instruments, but it's the same track.
Though this adds an extra channel that you may not have access to, thankfully there is
another way to do this with just one channel. If we look at a channel in MML format, we
can see the recipe easily.

tsecl _chn5:
chan_setinstr
chan_setlayer 0, tsecl _chn6_ly2 1
chan_setlayer 1, tsecl chn6_lyl

£y

chan_delay
chan_pitchbend
chan_end

We have two layers in our channel, but room for four, so we have extra room we are not
utilizing in this channel to fill it out. If we duplicate the layer and apply a different effect
on it we are getting more sound for little work, though the issue is, all of our effects must
only act on layers. So we need to look at our possible layer effects. We can transpose,
pan, and set an instrument, which is a bit limiting but is good enough for what we need
most of the time. So to accomplish my goal, | will duplicate a layer, and then change the
instrument.

tsecl chn5:
chan_setinstr
chan_setlayer 0, tsecl chn6 _ly2 1

chan_setlayer 1, tsecl chn6_lyl
chan_setlayer 2, tsecl _chn6_ly2
chan_delay

chan_pitchbend

chan_end

tsecO _chné_ly2:
layer_setinstr
tsecO_chn6_ly2 1:

| gave the layer an index of 2, so | would not overwrite any other layer, and then a
different name so it could hold my layer effect. Then in that layer, | simply set the
instrument, and then place it before the layer | want it to inherit from. So in this case,
layer 2 is the same as layer 0 but with a different instrument.

Legato

Legato is an effect that means to blend together, or to continuously play notes. In a
technical sense, this means you don’t restart the sample between notes. Legato is
practically never used in sm64 because it is not an easy effect to use. Legato is a layer
event exclusively, which means it will never inherit from midi, we must manually place it
in our layers while in MML format.

If you are using seq64 1.5, | have added legato as a cmd, you can add it by clicking a
Trk in the Loaded Sequence window and then add Legato On.

[No ROM]- seg64
ROM RomDesc Tools Help

E Files | Audioseq | MIDI File | Audicbank | Finder

Command Editor ————

D7: Chn Vibrato Rate (No Action) / Scare Vanila': 027 ions) @ : command

D8: Vibrato Extent (Chn) (Chn Vibrato) = 21 Note w/ T, V,
D9: Chn Release Rate (No Action) 2B:

DA: Set Envelope (Chn) (No Action) : 2B 0D 62 28

DB: Transposition (Chn Transpose) @ : @ 26 1B 6A BD
DC: Set Panmix (No Action) — — 34: 27 23 62 A8
DD: Chan Pan (Chn Pan) 20025 T i 38: 2B 5F 78 E2
= 3C: 65 80 8D 66
0: FF End of Data

00 to 3F: Note v
: Note v

Timesta (5)
ranspose (Layer Transpose)
: Legato On (
: Legato Off (No Action)
: layer inst (No Action)
7: Layer Portamento (Track Note)
: Disable Portamento (No Action)

w

Valid in

=y

Name: |Legato On | Seq header

I I ' I ' ' '
Ol ol HO I FOI Ol WNHO I
o

MR WO~NNONG W & &~

fa)
=
3=
i
=

I

Command: |C4 to | Chn header

Action: | No Action ~ | Track data

Parameters: Edit Parameter

Name:
Data source:
| €md Offset (no data)

| Fixi
Al = length | 1 (dec)

| Variable Legato On ~ | Add | Del Up | Dn

Meaning: | None ~ Command Action: No Action

value:
Add (dec): |0 Multiply: 1.0 el
[dec, note equiv.]

Legato will only work if there is no gap between notes, otherwise it will sound the same
as if there was no legato.

In seq64 2.1, you need to export it to .mus (mml format) and then inside of your layer,
you need to add layer_somethingon which is an awful name, but it is what it is called in
sm64 decomp.

If you can’t picture what this sounds like, here is an audio example. ghost town legato

Conclusion

With this tutorial, you should know how to do everything basic you need to do with
sequences. If you have any questions contact me in a way | can be contacted,
e smb64romhackswebsite@gmail.com
https://romhacking.com/user/jesusyoshi54

[]
e https://www.youtube.com/c/jesusyoshis54
e https://qitlab.com/scuttlebugraiser

| will cover dynamic sequences, how to write asm like structures, envelopes, sfx and
how to do completely overdo sequences in another tutorial (or multiple ones)
somewhere down the line.

https://drive.google.com/file/d/180pWRxm0-BGwBLH5ZoOK4MGJz8AW3FiD/view?usp=sharing
mailto:sm64romhackswebsite@gmail.com
https://romhacking.com/user/jesusyoshi54
https://www.youtube.com/c/jesusyoshi54
https://gitlab.com/scuttlebugraiser

	Intro
	MML Format
	Sequence File Representations
	Understanding Sequence Macros

	MML Effects and Events
	Important Effects and Events

	Instruments and Notes
	Instruments
	Banks
	Percussion
	Waves
	Notes

	Sequence Parsing
	Creating Practical Effects for Songs
	Midi
	Channel Effects
	MML event mappings in SEQ64 1.5
	MML events in Seq64 2.1
	Common effects and their midi CCs

	Custom Loop Point
	Changing Banks
	Tempo Changes
	Multi Layer Sound
	Legato

	Conclusion

