L6th

A level Physics

Christmas Vacation Work

Electrical Circuits

How much work should you be doing over the 4 weeks that you have off?

- 2 hours of file tidying get them perfectly ordered
- 1 hour for each teacher of consolidating notes are you missing any flashcards etc?
- 55 minutes answering these questions

What we are expecting to check when you return:

- ✓ These questions have been marked
- ✓ You have calculated your percentage and grade
- ✓ Written down the areas where you are still struggling. We will collate these and swiftly address these in clinic during the first few weeks of term.

Total: / 49marks	Grade (circle):
Topics that you are still struggling with and why:	A* = 75%
	A = 70%
	B = 65 %
	C = 60 %

Happy Christmas!

Section A - MULTIPLE CHOICE SECTION

Question 1

- 1 A child's toy is operated by a small motor. The potential difference across the motor is 6.0 V and the current in it is 0.20 A. The energy used by the motor in 120 s is
 - A 2.40 J
 - B 60.0 J

 - ☑ D 3600 J

(Total for Question 1 = 1 mark)

Question 2

- 2 The resistance of a length of copper wire is 6 Ω. A second piece of copper wire has twice the length and twice the cross-sectional area. The resistance of the second piece of copper wire is

 - B 6 Ω
 - C 12 Ω
 - \square **D** 24 Ω

(Total for Question 2 = 1 mark)

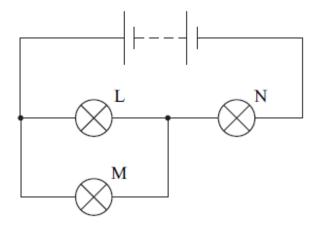
Question 3

3 The diagrams show connected wires that carry currents I1, I2, I3 and I4.

The currents are related by the equation $I_1 + I_2 = I_3 + I_4$

Identify the diagram that this equation applies to.

- \boxtimes A
- \square B
- D



- 4 A 100 W lamp connected to the 230 V mains is replaced by a lamp which has twice the resistance. The power of the new lamp is
 - A 25 W
 - B 50 W
 - C 200 W
 - D 400 W

(Total for Question 4 = 1 mark)

Question 5

5 In the circuit shown, the battery has negligible internal resistance. L, M and N are identical lamps.

The filament of lamp M breaks. Identify the row of the table which shows the resulting changes in the brightness of lamps L and N.

		Lamp L	Lamp N
×	A	increases	stays the same
×	В	stays the same	decreases
×	C	decreases	increases
×	D	increases	decreases

(Total for Question 5 = 1 mark)

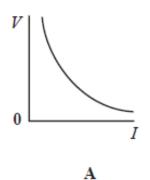
- 6 Which of the following can be used as a unit of electrical resistance?
 - \triangle A W A⁻²
 - \boxtimes B A V⁻¹

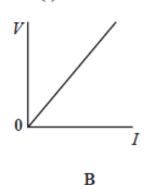
 - \square D V C⁻¹

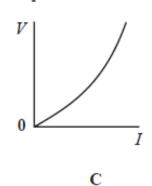
(Total for Question 6 = 1 mark)

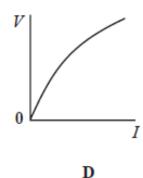
Question 7

- 7 An electron is accelerated through a large potential difference and gains a kinetic energy of 47 keV. This energy expressed as joules equals
 - \triangle A 7.5 × 10⁻¹⁸ J
 - **B** 7.5×10^{-15} J
 - C 2.9 × 10²⁰ J
 - D 2.9 × 10²³ J


(Total for Question 7 = 1 mark)


Question 8





8 Which one of the following graphs correctly shows the relationship between potential difference (V) and current (I) for a filament lamp?

- \mathbf{A}
- \mathbb{Z} B
- \square **D**

(Total for Question 8 = 1 mark)

Section B - LONG ANSWER SECTION

Question 9

a) A cell of e.m.f. 1.5 V is connected to a lamp of resistance 80Ω . The current in the circuit is 17 mA.
Calculate the internal resistance of this cell
Internal resistance =
(3

b) Explain, in terms of energy, the difference between potential difference (p.d.) and electromotive force (e.m.f.)

(2)

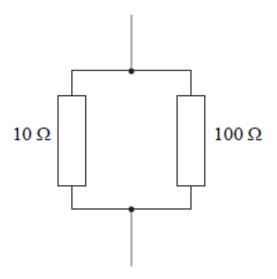
(Total for Question 9 = 5 marks)

Question 10

a) The photograph shows a marble statue. The statue is protected by a lightning conductor.

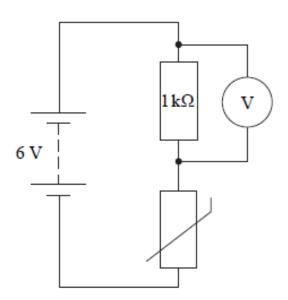
During a storm, a flash of lightning passes between a cloud and the lightning conductor. As a result a current of 15000 A flows for a time of 3.0×10^{-2} s.

i) Calculate the charge that flows in the lightning conductor during this time


Charge =
(2
ii) The lightning conductor is 1 m taller than the statue and is made from copper, which has a resistivity of $1.7 \times 10^{-8} \Omega \text{m}$. The lightning conductor has a cross-sectional area of $1.5 \times 10^{-4} \text{m}^2$ and a resistance of $2.7 \times 10^{-3} \Omega$.
Calculate the height of the statue and state an assumption that you have made
Height of statue =
Assumption:
(4
b) Suggest why the lightning conductor is taller than the statue
(1

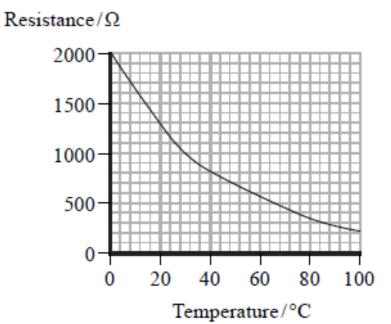
(Total for Question 10 = 7 marks)

Two resistors are connected in parallel.


a) Calculate the resistance of the combination.

.....

Resistance =
(2)
b) This resistance combination is used in an electrical circuit. A student measures the potential difference across the combination with a high resistance voltmeter. Explain why the resistance of the combination is hardly changed by the addition of the voltmeter.
(3)
(Total for Question 11 = 5 marks)

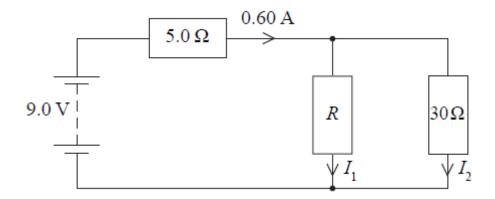

The following circuit is used to monitor the temperature in a greenhouse. The battery has no internal resistance

a) The graph shows how the resistance of the thermistor varies with temperature

i)	Use the graph to find the resistance of the thermistor at 20 °C.	
	Resistance =	
		(1
ii)	Calculate the reading on the voltmeter when the thermistor is at 20 °C.	
•••••		
•••••		
	Reading on the voltmeter =	
		(3
b)	Explain what will happen to the reading on the voltmeter as the temperature of the greenhouse decreases	

(2)
(Total for Question 12 = 6 marks)
Question 13
A length of wire has a cross-sectional area of 3.1×10^{-6} m ² . A current of 1.5 A flows through the wire when there is a p.d. of 3.0 V across it.

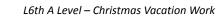
a) Draw a diagram of the circuit you would use to check these current and p.d. values.


1	7
/	1

b) Calculate the rate at which energy is transferred to the wire
Rate of energy transfer =
(2)
c) The wire has 1.0×10^{29} electrons per metre cubed.
Calculate the drift velocity of the electrons.
Drift velocity =
(2)

(Total for Question 13 = 6 marks)

Question 14


The circuit diagram shows a battery of negligible internal resistance connected to three resistors

a) Calculate the potential difference across the 5 Ω resistor.
D + + + 1 1 100
Potential difference =
b) Calculate the current <i>I</i> ₂ .
Current in I_2 =
(2)
c) Calculate the resistance R.
R =
(2)
(Total for Question 14 = 6 marks)
Question 15
Given a cylinder of conductive putty of length L , cross-sectional area A , and resistivity ρ , describe how you would use a voltmeter, ammeter and other standard laboratory equipment to determine a value for the numerical value of resistivity of the putty.
Your description should include: • A labelled circuit diagram • Details of the measurements you would make • An account of how you would use your measurements to determine the result

Details of how to improve the accuracy and precision of your measurements

(6)

(Total for Question 15 = 6 marks)

THIS IS THE END OF THE PAPER

