
This Document Is Shared Publicly

Propagate metric metadata via remote
write
Author: ​ Josh Abreu
Date:​ ​ February 2020
Status: ​ Draft
Visibility:​ Document is public

Problem Statement
Currently, Prometheus implements API endpoints to expose metric metadata (HELP, TYPE,
METRIC NAME, UNIT). Specifically the /api/v1/metadata and
/api/v1/targets/metadata endpoints.These endpoints allow correlation between metrics
and metadata for both operators and integrations:

-​ Operators and users can take a holistic view of the metadata exposed by the
Prometheus server by inspecting the JSON output of the API endpoint.

-​ Visualization integrations like Grafana take advantage of this API endpoint to provide
users a better experience whilst using the Prometheus data e.g. Display of the
HELP/TYPE for the metric under inspection or inform query hints.

At the moment of writing, metric metadata is never sent via remote write. Existing remote write
integrations are not able to implement these endpoints (and therefore missout on features)
using strictly the information that is sent via the protocol.

Challenges
Propagating this information is non-trivial and poses many design and implementation
challenges:

-​ The protocol can’t rely on the current implementation for samples as metadata is never
stored on disk and samples for remote write are read from the WAL.

-​ Metadata is scraped and kept in-memory on a per-target basis. This implies there will be
duplication across metadata scraped by targets and brings bandwidth concerns to
the table.

-​ The remote write protocol has no notion of “Targets”. Within Prometheus, metadata
is closely stored and related to a Target.

-​ Scraping is a mission-critical operation of Prometheus. Any sort of blocking operation
or slow-down while scraping due to propagation of metadata is not accepted.

https://prometheus.io/docs/visualization/grafana/
https://prometheus.io/docs/operating/integrations/#remote-endpoints-and-storage
https://prometheus.io/docs/operating/integrations/#remote-endpoints-and-storage

Goals and non-Goals

Goals
-​ Make the feature as frictionless as possible and allow integrations to adopt it without

(hopefully) any sort of configuration changes on Prometheus. This means, it is enabled
by default and does not break current implementations.

-​ Do the simplest thing now that allows remote integrations to replicate
api/v1/metadata but ensure it is usable later. There are many challenges attached to
this feature, I want to make sure we do the minimum that’s viable but leaving room for
improvement in the future.

Non-Goals
-​ Propagate information that supports implementation of

/api/v1/targets/metadata. Specifically, target information.
-​ Metadata is currently a “best-effort” approach within Prometheus, it is never permanently

stored and it’s always kept in memory. I’m not looking to provide any guarantees that
Prometheus itself does not.

-​ Not store and/or read metadata to/from the WAL/TSDB. Instead, we want to find what
has relatively low complexity and start building a foundation for that in the future.

This document presents various options on how we can propagate metric metadata under the
remote write protocol taking the previous into consideration.

Potential Solutions

Reading metadata

Append metadata to a remote write queue as it is scraped (push)
As a target is scraped, metadata is being set incrementally: first HELP, then the TYPE, then the
UNIT, etc. Then, at the end of the scrape process for that target, the cache is verified to purge
metadata entries we have not seen in the past 10 scrapes.

https://github.com/gotjosh/prometheus/blob/metadata-remote-write/scrape/scrape.go#L710-L717
https://github.com/gotjosh/prometheus/blob/metadata-remote-write/scrape/scrape.go#L710-L717

As a lock is already being grabbed during the process, one option to minimise locking is reading
the metadata currently in the cache at this time. The idea is to send the metadata as it is being
read from the cache to a remote write queue for buffering before propagation.

The challenge with this approach is that we would block until metadata finishes enqueuing,
causing potential slowdowns if the remote write queue can not cope with the rate at which
metadata is being pushed. Furthermore, this causes coupling between remote write and
scraping.

Append metadata on a regular interval (pull)
Another option is to flip the impedance from the previous approach and instead of “pushing”
metadata to the queue, we can “pull” it by reading the cache on a regular period. This approach
is very similar to how the wal.Watcher works today for reading samples.

This approach avoids any sort of complete block of the scraping process as this would run on a
separate goroutine. However, some locks would still be contested from time to time as
TargetsActive() the function where we can obtain the targets to get the metadata from uses
the several locks, including the one from the metadata cache as we execute ListMetadata().
Additionally, _some_ metadata will be missed if the targets churns as TargetsActive() will
only return active targets, and on restart.

Sending metadata
Sending metadata poses two main questions:

-​ How do we send it?
-​ How often?

Within this section, we’ll evaluate several options for sending and leave the “how often”
discussion for the conclusion. Keep in mind that our main goal for the feature is to make it as

https://github.com/gotjosh/prometheus/blob/metadata-remote-write/tsdb/wal/watcher.go
https://github.com/gotjosh/prometheus/blob/metadata-remote-write/scrape/manager.go#L325-L348
https://github.com/gotjosh/prometheus/blob/metadata-remote-write/scrape/scrape.go#L836-L851

frictionless as possible and allow our users to adopt it without (hopefully) any sort of
configuration changes.

Send metadata on a different Protobuf message
We create a new protobuf definition called MetadataRequest (or something similar) that
would send metadata of metrics. Then, we have integrations handle (or not) this new message.
With this approach, we create an opt-in approach where integrations can choose to implement it
when they’re ready.

E.g.:

message MetadadataRequest {
 repeated MetricMetadata = 2 [(gogoproto.nullable) = false];
}

Introducing the feature as a new message makes it harder to increase adoption as integrations
would need to define how to handle the new message, where to send it, and eventually enable
the feature within Prometheus.

A clear example of this would be Cortex, as it doesn’t know how to handle any other messages
but WriteRequest on the push endpoint.

Send metadata for the samples in a WriteRequest
Another option would be to embed the metadata for the samples being sent as part of a
WriteRequest. That is, metadata that is specific to the current samples within the message.

E.g.:

https://github.com/cortexproject/cortex/blob/master/pkg/distributor/http_server.go#L16-L49
https://github.com/cortexproject/cortex/blob/master/pkg/distributor/http_server.go#L16-L49

message TimeSeries {
 repeated Label labels = 1 [(gogoproto.nullable) = false];
 repeated Sample samples = 2 [(gogoproto.nullable) = false];
 MetricMetadata metadata = 3;
}

message MetricMetadata {
 enum MetricType {
 Counter = 0;
 // … more to add
 }
 MetricType type = 1;
 string metricName = 2;
 string help = 4;
 string unit = 5;
}

The challenge here is the duplicity of the metadata as per the protobuf protocol, fields not
recognised by the consumer will simply be dropped to ensure backwards-compatibility.

Metadata for a given metric rarely differs as targets often have high overlap in metadata. For
example, at Grafana Labs the /api/v1/metadata endpoint for one of Prometheus servers
(with 782k active series) returns 1803 metadata entries, out of those only 10 have more than
one entry of metadata.

Sending metadata associated with samples results in plenty of duplicated data being sent on a
regular interval. Furthermore, increasing the byte size of requests that includes the samples will
result in a slower ingestion rate for integrations. As a side effect, this might affect shard
calculation and thus significantly increase the memory footprint while remote write is on.

Send metadata at a different interval but within a WriteRequest
A final option is to reuse the same WriteRequest we currently use for samples. Similarly to
the previous approach, adding a new field to the existing message helps us leverage the
backwards-compatibility properties of the protobuf protocol.

E.g.:
message WriteRequest {
 repeated prometheus.TimeSeries timeseries = 1 [(gogoproto.nullable)
= false];
 repeated prometheus.MetricMetadata metadata = 2;
}

https://prometheus.io/docs/practices/remote_write/#memory-usage
https://prometheus.io/docs/practices/remote_write/#memory-usage

The important aspect of this approach is that there is no relation between the samples sent and
metadata. In fact, the approach proposed encourages not sending samples when we send
metadata (and vice-versa).

We’d have separate shard(s) for sending metadata, completely independent from the sending of
samples. This allows us to leverage the current delivery mechanism of the message (as we’d
use the same endpoint) but control the rate and what metadata gets sent independently from
the samples.

This approach would effectively be changing the protocol slightly as at the moment of writing we
never send WriteRequests without data. We’d need to make sure remote write integrations
can support this case.

Conclusion

Reading metadata
I conclude that the preferable option is: Appending metadata on a regular interval. Given the
sensitivity of the scraping operation within Prometheus, this approach poses a lesser amount of
risk for slowing or blocking it. Operationally, it is somewhat similar to the wal.Watcher which
makes the pattern recognizable within the codebase.

The tl;dr; is that we pull data from the scrape cache at regular intervals.

Sending metadata
The preferable option is: Send metadata at a different interval but within a WriteRequest.
Given the overarching goal of ease of opt-in, this option introduces the minimum amount of
friction for adoption while minimising the risk of slow-down of the protocol.

Bandwidth
Since Prometheus does not impose a limit on metadata (HELP, TYPE, UNIT or Metric Name), a
valid concern is how much bandwidth we end up consuming.

As a reference, we can use Grafana Labs numbers from one of our Prometheis. Keep in mind
that within Prometheus, metadata is not kept per series but rather per metric name in the scrape
cache (and also we keep a scrape cache per target). With that in mind, let’s look at some
numbers for the uncompressed data.

https://github.com/prometheus/prometheus/blob/master/storage/remote/queue_manager.go#L825-L830
https://github.com/prometheus/prometheus/blob/fe76ccbfe3bb2a7549bbb1454c3a51ff4544c6d6/scrape/scrape.go#L774-L818
https://github.com/prometheus/prometheus/blob/fe76ccbfe3bb2a7549bbb1454c3a51ff4544c6d6/scrape/scrape.go#L774-L818

With ~2.6M active series, we can observe a total of ~10.65MB for the metadata cache size
across ~194k metadata entries. That gives us an average metadata entry size of 55 bytes.

However, out of those we only have at most ~1800 unique entries (per /api/v1/metadata).

For comparison, let’s see how much bandwidth does sample data consumes for an example
cluster. First, let’s look at the ratio of series and remote write bandwidth. The query below
indicates that the ratio is about ~2.3 bytes per series which implies that with 1M active series is
about ~ 2.1MB/s of sample data.

Compared this with metadata and it is observed that the ratio is about 0.000001 bytes per series
and less than > 1 byte/s of metadata data with 1M active series.

https://admin-ops-tools1.grafana.net/grafana/explore?orgId=1&left=%5B%22now-15m%22,%22now%22,%221-ops-tools1%22,%7B%22expr%22:%22prometheus_tsdb_head_series%7Binstance%3D%5C%22prometheus-two-0%5C%22,%20cluster%3D%5C%22us-central1%5C%22%7D%22%7D,%7B%22expr%22:%22sum(prometheus_target_metadata_cache_bytes%7Binstance%3D%5C%22prometheus-two-0%5C%22,cluster%3D%5C%22us-central1%5C%22%7D)%22%7D,%7B%22expr%22:%22sum(prometheus_target_metadata_cache_entries%7Binstance%3D%5C%22prometheus-two-0%5C%22,cluster%3D%5C%22us-central1%5C%22%7D)%22%7D,%7B%22expr%22:%22sum(prometheus_target_metadata_cache_bytes%7Binstance%3D%5C%22prometheus-two-0%5C%22,cluster%3D%5C%22us-central1%5C%22%7D)%20%2F%20sum(prometheus_target_metadata_cache_entries%7Binstance%3D%5C%22prometheus-two-0%5C%22,cluster%3D%5C%22us-central1%5C%22%7D)%22%7D,%7B%22mode%22:%22Metrics%22%7D,%7B%22ui%22:%5Btrue,true,true,%22none%22%5D%7D%5D

Taking it one step further, the proposal is to only send this metadata every 15 seconds. Because
of this, we believe it’s feasible to propagate metadata via remote writing at this interval.

Frequency
Within this work, there are two key intervals. One is the interval at which metadata is read from
the scrape cache and the other is the interval at which is sent to the remote write endpoint. Safe
to say that the discussion revolves around “what are sensible defaults?” as both of these should
configurable by an operator.

We propose the combination of the two and use a default of 15 seconds (similar to the scrape
interval). This means, we send at the moment we pull the data from the scrape cache (and
block the single goroutine while doing so).

Considering the fact that metadata is purged from the cache at the end of every scrape and we
have a default scrape interval of 15 seconds. I think this interval gives us enough time to purge
some metadata we’ve not seen in a while.

Open Questions

References

Diagrams
[1]
sequenceDiagram
 Loop AppendMetadata
​ ScrapeCache->>+QueueManager:
​ end
​ QueueManager->>+QueueManager: QueueMetadata
​ QueueManager->>+RemoteWriteEndpoint: Send
[2]
sequenceDiagram
 Loop Every X seconds
​ MetadataWatcher->>+ScrapeManager: TargetsActive()
​ ​ ScrapeManager-->>+MetadataWatcher: []Targets
​ ​ MetadataWatcher->>+MetadataWatcher: For every target: MetadataList()
​ ​ MetadataWatcher->>+QueueManager: AppendMetadata(MetadataList())
​ end

	Propagate metric metadata via remote write
	Problem Statement
	Challenges
	Goals and non-Goals
	Goals
	Non-Goals

	Potential Solutions
	Reading metadata
	Append metadata to a remote write queue as it is scraped (push)
	Append metadata on a regular interval (pull)

	Sending metadata
	Send metadata on a different Protobuf message
	Send metadata for the samples in a WriteRequest
	Send metadata at a different interval but within a WriteRequest

	Conclusion
	Reading metadata
	Sending metadata
	Bandwidth
	Frequency

	Open Questions
	References

