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VBA 

VBA Function : return array 2 dimentions 

Function getData() As Variant()​
    Dim ar(2, 2) As Variant​
​
    ar(0, 0) = "x"​
    ar(0, 1) = 1​
    ​
    ar(1 0) = "y"​
    ar(1, 1) = 2​
​
    getData= ar​
​
End Function 

//How to use formula : use like array formula by “Ctrl+Shift+Enter”. 

 

Extended Euclidean algorithm F1 

 

Function extGCDof_a_b_to_5_2(a As LongLong, b As LongLong) As Variant()​
    Dim ar(5, 2) As Variant​
    Dim s As LongLong, old_s As LongLong, t As LongLong, old_t As 

LongLong, r As LongLong, old_r As LongLong, Quotient As LongLong, prov 

As LongLong​
        s = 0​
        old_s = 1​
        t = 1​
        old_t = 0​
        r = b​
        old_r = a​
    While r <> 0​
        Quotient = Int(old_r / r)​
        '(old_r, r) := (r, old_r - quotient * r)​
        prov = r​
        r = old_r - Quotient * prov​
        old_r = prov​

 

https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm#Polynomial_extended_Euclidean_algorithm


 

        '(old_s, s) := (s, old_s - quotient * s)​
        prov = s​
        s = old_s - Quotient * prov​
        old_s = prov​
        '(old_t, t) := (t, old_t - quotient * t)​
        prov = t​
        t = old_t - Quotient * prov​
        old_t = prov​
    Wend​
    ​
    'output "greatest common divisor:", old_r​
    ar(0, 0) = "GCD"​
    ar(0, 1) = old_r​
    'output "Bézout coefficients:", (old_s, old_t)​
    ar(1, 0) = "Bezout coeff of a"​
    ar(1, 1) = old_s​
    ar(2, 0) = "Bezout coeff of b"​
    ar(2, 1) = old_t​
    ​
    'output "quotients by the gcd:", (t, s)​
    ar(3, 0) = "quotients of a"​
    ar(3, 1) = t​
    ar(4, 0) = "quotients of b"​
    ar(4, 1) = s​
    ​
    extGCDof_a_b_to_5_2 = ar​
End Function 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

Extended Euclidean algorithm F2 
 

Function extGCD2of_a_b_to_3_2(a As LongLong, b As LongLong) As Variant()​
    Dim ar(3, 2) As Variant​
    Dim s As LongLong, old_s As LongLong, r As LongLong, old_r As 

LongLong, Quotient As LongLong, prov As LongLong, bezout_t As LongLong​
        s = 0​
        old_s = 1​
        r = b​
        old_r = a​
    While r <> 0​
        Quotient = Int(old_r / r)​
        '(old_r, r) := (r, old_r - quotient * r)​
        prov = r​
        r = old_r - Quotient * prov​
        old_r = prov​
        '(old_s, s) := (s, old_s - quotient * s)​
        prov = s​
        s = old_s - Quotient * prov​
        old_s = prov​
    Wend​
    ​
    If b <> 0 Then​
        bezout_t = Int((old_r - old_s * a) / b)​
    Else​
        bezout_t = 0​
    End If​
    'output "greatest common divisor:", old_r​
    ar(0, 0) = "GCD"​
    ar(0, 1) = old_r​
    'output "Bézout coefficients:", (old_s, bezout_t)​
    ar(1, 0) = "Bezout coeff of a"​
    ar(1, 1) = old_s​
    ar(2, 0) = "Bezout coeff of b"​
    ar(2, 1) = bezout_t​
        ​
    extGCD2of_a_b_to_3_2 = ar​
End Function 

 
 
 
 
 

 



 

multiplicative inverses in modular 

Function Mod_mult_inv(a As Long, n As Long)​
'at =_ 1 mod n​
'https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm#Computing_mu

ltiplicative_inverses_in_modular_structures​
Dim t As Long, newt As Long, r As Long, newr As Long, Quotient As Long, 

prov As Long​
    t = 0​
    newt = 1​
    r = n​
    newr = a​
​
    While newr <> 0​
        Quotient = Int(r / newr)​
        '(t, newt) = (newt, t - quotient * newt)​
        prov = newt​
        newt = t - Quotient * prov​
        t = prov​
        '(r, newr) = (newr, r - quotient * newr)​
        prov = newr​
        newr = r - Quotient * prov​
        r = prov​
    Wend​
    If r > 1 Then​
        'return "a is not invertible"​
        t = -9999999​
    End If​
    If t < 0 Then​
        t = t + n​
    End If​
    ​
    Mod_mult_inv = t​
End Function 

 

Use Loop with Range vba 

‘https://stackoverflow.com/questions/18168151/vba-pass-a-group-of-cells-as-range

-to-function 

Function myAdd(Arg1 As Range, ParamArray Args2() As Variant) As Double  

     Dim elem As Variant  

     Dim i As Long  

     For Each elem In Arg1  

 

https://stackoverflow.com/questions/18168151/vba-pass-a-group-of-cells-as-range-to-function
https://stackoverflow.com/questions/18168151/vba-pass-a-group-of-cells-as-range-to-function


 

       myAdd = myAdd + elem.Value  

     Next elem  

     For i = LBound(Args2) To UBound(Args2)  

          For Each elem In Args2(i)  

               myAdd = myAdd + elem.Value  

          Next elem  

     Next i  

End Function 

‘--------------------------------------------------------------- 

by zam007 

Function test(R As Range) As Double 

     Dim n As Double, sum As Double 

        n = R.Count 

     Dim i As Long      

     For i = 1 To n 

        sum = sum + R(i, 1)  ‘sum of column range 

     Next i 

      

     test = sum 

End Function 

 

 

Kernel Bandwidth Selection 
‘https://www.di.ubi.pt/~lfbaa/pubs/tecrep2008.pdf 
 

 

Function Find_h_sortedData(R As Range, e As Double) As Double 

    'R.Sort order1:=xlAscending, Header:=xlNo 

    Dim n As Double 

        n = R.Count 

    Dim i As Long, j As Long, k4 As Double, h0 As Double, h1 As Double, 

S1 As Double, sum As Double  ', e As Double 

         

    'e = 0.00001   '0.001 

     '=0.9*POWER(5,-1/5)*MIN(    

(QUARTILE.EXC(C6:C10,3)-QUARTILE.EXC(C6:C10,1))/1.34,STDEV.S(C6:C10)) 

    S1 = 0.9 * (n ^ (-0.2)) * 

Application.WorksheetFunction.Min((Application.WorksheetFunction.Quartil

e_Exc(R, 3) - Application.WorksheetFunction.Quartile_Exc(R, 1)) / 1.34, 

Application.WorksheetFunction.StDev_S(R)) 

    h0 = S1 

    h1 = h0 + e 

     

 

https://www.di.ubi.pt/~lfbaa/pubs/tecrep2008.pdf


 

    While Abs(h1 - h0) > e 

     

        h0 = h1 

        '+++++++++++++++++++++++++++++++++ 

         

            sum = 0 

            For i = 1 To n 

                For j = 1 To i - 1 

                    sum = sum + (((R(i, 1) - R(j, 1)) ^ 2 - 6 * h0 ^ 2) 

^ 2 - 24 * h0 ^ 4) * (Exp(-((R(i, 1) - R(j, 1)) / 2 / h0) ^ 2)) 

                Next j 

            Next i 

             

        k4 = 3 * n * h0 + (1 / 2 / (h0 ^ 3)) * sum 

        '************************************** 

        h1 = ((4 * n * (h0 ^ 6)) / k4) ^ 0.2 

        '////////////////////////////////////// 

         

        '---------------- 

        h1 = (h0 + h1) / 2 

     

    Wend 

 

    Find_h_sortedData = h1 

End Function 

 

‘+++++++++++++++++++++++++++++ 

‘--------- V 2 —————————- 

Function Find_h_sortedData(R As Range, e As Double, itrMax As Long) As 

Double 

    'R.Sort order1:=xlAscending, Header:=xlNo 

    Dim n As Double 

        n = R.Count 

    Dim ifor As Long, i As Long, j As Long, k4 As Double, h0 As Double, 

h1 As Double, S1 As Double, sum As Double ', e As Double 

         

    'e = 0.00001   '0.001 

     '=0.9*POWER(5,-1/5)*MIN(    

(QUARTILE.EXC(C6:C10,3)-QUARTILE.EXC(C6:C10,1))/1.34,STDEV.S(C6:C10)) 

    S1 = 0.9 * (n ^ (-0.2)) * 

Application.WorksheetFunction.Min((Application.WorksheetFunction.Quartil

e_Exc(R, 3) - Application.WorksheetFunction.Quartile_Exc(R, 1)) / 1.34, 

Application.WorksheetFunction.StDev_S(R)) 

    h0 = S1 

    h1 = h0 + e 

 



 

     

    sum = 0 

    'While Abs(h1 - h0) >= e  'old is > ...new is >=  '' Abs(h1 - h0) >= 

e 

    For ifor = 1 To itrMax 

        h0 = h1 

        '+++++++++++++++++++++++++++++++++ 

         

            sum = 0 

            For i = 1 To n 

                For j = 1 To i - 1 

                    sum = sum + (((R(i, 1) - R(j, 1)) ^ 2 - 6 * h0 ^ 2) 

^ 2 - 24 * h0 ^ 4) * (Exp(-((R(i, 1) - R(j, 1)) / 2 / h0) ^ 2)) 

                Next j 

            Next i 

             

        k4 = 3 * n * h0 + (1 / 2 / (h0 ^ 3)) * sum 

        '************************************** 

        h1 = ((4 * n * (h0 ^ 6)) / k4) ^ 0.2 

        '////////////////////////////////////// 

         

        '---------------- 

        h1 = (h0 + h1) / 2    ' not enable is ok too. 

         

        'newwwwww 

        If (Abs(h1 - h0) <= e) Then Exit For 

         

         

     

    Next ifor   'wend 

 

    Find_h_sortedData = h1 

End Function 

 

 



 

 

Excel Formula 

Quantile function of   Standard normal distribution 

=10*LOG( 1 - LOG( -LOG(A1,2),22),41)​
=10/LOG10(41)*LOG10(1-LOG10(-LOG10(A1)/LOG10(2))/LOG10(22)) 

Zam switch function 

=MOD(POWER(2,CEILING.MATH(LOG10(ABS(A1)+9))-1),2)​
***answer iis  0,1 

 
 
https://script.google.com/macros/s/AKfycbzw2jpiPunqe-Miwd6dlbNZsXqidQi-uKA7mHWL/ex
ec 

 

https://script.google.com/macros/s/AKfycbzw2jpiPunqe-Miwd6dlbNZsXqidQi-uKA7mHWL/exec
https://script.google.com/macros/s/AKfycbzw2jpiPunqe-Miwd6dlbNZsXqidQi-uKA7mHWL/exec
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