

Contents
Contents​ 1

VBA​ 2
VBA Function : return array 2 dimentions​ 2
Extended Euclidean algorithm F1​ 2
Extended Euclidean algorithm F2​ 4
multiplicative inverses in modular​ 5
Use Loop with Range vba​ 5
Kernel Bandwidth Selection​ 6

Excel Formula​ 8
Quantile function of Standard normal distribution​ 8
Zam switch function​ 8

VBA

VBA Function : return array 2 dimentions

Function getData() As Variant()​
 Dim ar(2, 2) As Variant​
​
 ar(0, 0) = "x"​
 ar(0, 1) = 1​
 ​
 ar(1 0) = "y"​
 ar(1, 1) = 2​
​
 getData= ar​
​
End Function

//How to use formula : use like array formula by “Ctrl+Shift+Enter”.

Extended Euclidean algorithm F1

Function extGCDof_a_b_to_5_2(a As LongLong, b As LongLong) As Variant()​
 Dim ar(5, 2) As Variant​
 Dim s As LongLong, old_s As LongLong, t As LongLong, old_t As

LongLong, r As LongLong, old_r As LongLong, Quotient As LongLong, prov

As LongLong​
 s = 0​
 old_s = 1​
 t = 1​
 old_t = 0​
 r = b​
 old_r = a​
 While r <> 0​
 Quotient = Int(old_r / r)​
 '(old_r, r) := (r, old_r - quotient * r)​
 prov = r​
 r = old_r - Quotient * prov​
 old_r = prov​

https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm#Polynomial_extended_Euclidean_algorithm

 '(old_s, s) := (s, old_s - quotient * s)​
 prov = s​
 s = old_s - Quotient * prov​
 old_s = prov​
 '(old_t, t) := (t, old_t - quotient * t)​
 prov = t​
 t = old_t - Quotient * prov​
 old_t = prov​
 Wend​
 ​
 'output "greatest common divisor:", old_r​
 ar(0, 0) = "GCD"​
 ar(0, 1) = old_r​
 'output "Bézout coefficients:", (old_s, old_t)​
 ar(1, 0) = "Bezout coeff of a"​
 ar(1, 1) = old_s​
 ar(2, 0) = "Bezout coeff of b"​
 ar(2, 1) = old_t​
 ​
 'output "quotients by the gcd:", (t, s)​
 ar(3, 0) = "quotients of a"​
 ar(3, 1) = t​
 ar(4, 0) = "quotients of b"​
 ar(4, 1) = s​
 ​
 extGCDof_a_b_to_5_2 = ar​
End Function

Extended Euclidean algorithm F2

Function extGCD2of_a_b_to_3_2(a As LongLong, b As LongLong) As Variant()​
 Dim ar(3, 2) As Variant​
 Dim s As LongLong, old_s As LongLong, r As LongLong, old_r As

LongLong, Quotient As LongLong, prov As LongLong, bezout_t As LongLong​
 s = 0​
 old_s = 1​
 r = b​
 old_r = a​
 While r <> 0​
 Quotient = Int(old_r / r)​
 '(old_r, r) := (r, old_r - quotient * r)​
 prov = r​
 r = old_r - Quotient * prov​
 old_r = prov​
 '(old_s, s) := (s, old_s - quotient * s)​
 prov = s​
 s = old_s - Quotient * prov​
 old_s = prov​
 Wend​
 ​
 If b <> 0 Then​
 bezout_t = Int((old_r - old_s * a) / b)​
 Else​
 bezout_t = 0​
 End If​
 'output "greatest common divisor:", old_r​
 ar(0, 0) = "GCD"​
 ar(0, 1) = old_r​
 'output "Bézout coefficients:", (old_s, bezout_t)​
 ar(1, 0) = "Bezout coeff of a"​
 ar(1, 1) = old_s​
 ar(2, 0) = "Bezout coeff of b"​
 ar(2, 1) = bezout_t​
 ​
 extGCD2of_a_b_to_3_2 = ar​
End Function

multiplicative inverses in modular

Function Mod_mult_inv(a As Long, n As Long)​
'at =_ 1 mod n​
'https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm#Computing_mu

ltiplicative_inverses_in_modular_structures​
Dim t As Long, newt As Long, r As Long, newr As Long, Quotient As Long,

prov As Long​
 t = 0​
 newt = 1​
 r = n​
 newr = a​
​
 While newr <> 0​
 Quotient = Int(r / newr)​
 '(t, newt) = (newt, t - quotient * newt)​
 prov = newt​
 newt = t - Quotient * prov​
 t = prov​
 '(r, newr) = (newr, r - quotient * newr)​
 prov = newr​
 newr = r - Quotient * prov​
 r = prov​
 Wend​
 If r > 1 Then​
 'return "a is not invertible"​
 t = -9999999​
 End If​
 If t < 0 Then​
 t = t + n​
 End If​
 ​
 Mod_mult_inv = t​
End Function

Use Loop with Range vba

‘https://stackoverflow.com/questions/18168151/vba-pass-a-group-of-cells-as-range

-to-function

Function myAdd(Arg1 As Range, ParamArray Args2() As Variant) As Double

 Dim elem As Variant

 Dim i As Long

 For Each elem In Arg1

https://stackoverflow.com/questions/18168151/vba-pass-a-group-of-cells-as-range-to-function
https://stackoverflow.com/questions/18168151/vba-pass-a-group-of-cells-as-range-to-function

 myAdd = myAdd + elem.Value

 Next elem

 For i = LBound(Args2) To UBound(Args2)

 For Each elem In Args2(i)

 myAdd = myAdd + elem.Value

 Next elem

 Next i

End Function

‘---

by zam007

Function test(R As Range) As Double

 Dim n As Double, sum As Double

 n = R.Count

 Dim i As Long

 For i = 1 To n

 sum = sum + R(i, 1) ‘sum of column range

 Next i

 test = sum

End Function

Kernel Bandwidth Selection
‘https://www.di.ubi.pt/~lfbaa/pubs/tecrep2008.pdf

Function Find_h_sortedData(R As Range, e As Double) As Double

 'R.Sort order1:=xlAscending, Header:=xlNo

 Dim n As Double

 n = R.Count

 Dim i As Long, j As Long, k4 As Double, h0 As Double, h1 As Double,

S1 As Double, sum As Double ', e As Double

 'e = 0.00001 '0.001

 '=0.9*POWER(5,-1/5)*MIN(

(QUARTILE.EXC(C6:C10,3)-QUARTILE.EXC(C6:C10,1))/1.34,STDEV.S(C6:C10))

 S1 = 0.9 * (n ^ (-0.2)) *

Application.WorksheetFunction.Min((Application.WorksheetFunction.Quartil

e_Exc(R, 3) - Application.WorksheetFunction.Quartile_Exc(R, 1)) / 1.34,

Application.WorksheetFunction.StDev_S(R))

 h0 = S1

 h1 = h0 + e

https://www.di.ubi.pt/~lfbaa/pubs/tecrep2008.pdf

 While Abs(h1 - h0) > e

 h0 = h1

 '+++++++++++++++++++++++++++++++++

 sum = 0

 For i = 1 To n

 For j = 1 To i - 1

 sum = sum + (((R(i, 1) - R(j, 1)) ^ 2 - 6 * h0 ^ 2)

^ 2 - 24 * h0 ^ 4) * (Exp(-((R(i, 1) - R(j, 1)) / 2 / h0) ^ 2))

 Next j

 Next i

 k4 = 3 * n * h0 + (1 / 2 / (h0 ^ 3)) * sum

 '**************************************

 h1 = ((4 * n * (h0 ^ 6)) / k4) ^ 0.2

 '//////////////////////////////////////

 '----------------

 h1 = (h0 + h1) / 2

 Wend

 Find_h_sortedData = h1

End Function

‘+++++++++++++++++++++++++++++

‘--------- V 2 —————————-

Function Find_h_sortedData(R As Range, e As Double, itrMax As Long) As

Double

 'R.Sort order1:=xlAscending, Header:=xlNo

 Dim n As Double

 n = R.Count

 Dim ifor As Long, i As Long, j As Long, k4 As Double, h0 As Double,

h1 As Double, S1 As Double, sum As Double ', e As Double

 'e = 0.00001 '0.001

 '=0.9*POWER(5,-1/5)*MIN(

(QUARTILE.EXC(C6:C10,3)-QUARTILE.EXC(C6:C10,1))/1.34,STDEV.S(C6:C10))

 S1 = 0.9 * (n ^ (-0.2)) *

Application.WorksheetFunction.Min((Application.WorksheetFunction.Quartil

e_Exc(R, 3) - Application.WorksheetFunction.Quartile_Exc(R, 1)) / 1.34,

Application.WorksheetFunction.StDev_S(R))

 h0 = S1

 h1 = h0 + e

 sum = 0

 'While Abs(h1 - h0) >= e 'old is > ...new is >= '' Abs(h1 - h0) >=

e

 For ifor = 1 To itrMax

 h0 = h1

 '+++++++++++++++++++++++++++++++++

 sum = 0

 For i = 1 To n

 For j = 1 To i - 1

 sum = sum + (((R(i, 1) - R(j, 1)) ^ 2 - 6 * h0 ^ 2)

^ 2 - 24 * h0 ^ 4) * (Exp(-((R(i, 1) - R(j, 1)) / 2 / h0) ^ 2))

 Next j

 Next i

 k4 = 3 * n * h0 + (1 / 2 / (h0 ^ 3)) * sum

 '**************************************

 h1 = ((4 * n * (h0 ^ 6)) / k4) ^ 0.2

 '//////////////////////////////////////

 '----------------

 h1 = (h0 + h1) / 2 ' not enable is ok too.

 'newwwwww

 If (Abs(h1 - h0) <= e) Then Exit For

 Next ifor 'wend

 Find_h_sortedData = h1

End Function

Excel Formula

Quantile function of Standard normal distribution

=10*LOG(1 - LOG(-LOG(A1,2),22),41)​
=10/LOG10(41)*LOG10(1-LOG10(-LOG10(A1)/LOG10(2))/LOG10(22))

Zam switch function

=MOD(POWER(2,CEILING.MATH(LOG10(ABS(A1)+9))-1),2)​
***answer iis 0,1

https://script.google.com/macros/s/AKfycbzw2jpiPunqe-Miwd6dlbNZsXqidQi-uKA7mHWL/ex
ec

https://script.google.com/macros/s/AKfycbzw2jpiPunqe-Miwd6dlbNZsXqidQi-uKA7mHWL/exec
https://script.google.com/macros/s/AKfycbzw2jpiPunqe-Miwd6dlbNZsXqidQi-uKA7mHWL/exec

	Contents
	
	VBA
	VBA Function : return array 2 dimentions
	Extended Euclidean algorithm F1
	Extended Euclidean algorithm F2
	multiplicative inverses in modular
	Use Loop with Range vba
	Kernel Bandwidth Selection

	Excel Formula
	Quantile function of Standard normal distribution
	Zam switch function

