Unit 5 Similarity and Proportions February 27, 2014 - March 14, 2014 Sunil Reddy Collaborators: Erin Garvey, Karen Guarino, Brad Latimer, Chris Pilla, Yenche Tioanda, Caitlin Thompson | Stage 1: Desired Results
Unit Goals | | |--|---| | Students will use similarity and proportional reasoning to analyze triangles and various polygons. Students will explore the similarities/differences between similar and congruent figures. Students will use similarity and proportional reasoning to indirectly determine the size of something. Students will examine proportions regarding side length, area, and volume of geometric figures. | | | Enduring Understandings (Student will understand that) | Essential Questions | | Similar figures are proportional. Similarity and proportional reasoning allow us to determine the size of something indirectly. Proportion works by comparing the relationships of parts. Knowing the relationships between parts are sometimes more important than knowing the size of each part. | What makes two figures 'similar'? Why is similarity useful? What does proportion mean? How does it work? Why use ratios and proportions instead of actual numbers? | | Knowledge (Student will know) | Skills (Student will be able to) | | Triangle shortcuts The difference between similarity and congruence. Indirect use of similarity/proportional reasoning in analyzing figures. | Write ratios and proportions. measure indirectly triangle similarity shortcut using similarity in problem-solving area & volume relationships in similar polygons and polyhedra | | Familiarity (Student will be familiar with) | | |---|---| | Different polyhedra and polygons Quadratic formula (algebra review) | | | Stage 2 – Assessment Evidence | | | Performance Tasks: Class work assignments/warm up problems: Quizzes/Miniproject: Project: "Building Blocks" – Surveying and Triangle Similarity. Students will create a booklet that explains and demonstrates several methods of finding heights indirectly (using stick method, mirror method), and performing verifications using "alternative methods." Then, students will collaboratively create a scale drawing of their neighborhood blocks, with each student being responsible for one building. | Other Evidence: • Homework assignments: daily • Journals: bi-weekly reflections on learning and EQs. | | Stage 3 - Learning Plan | | | Learning Activities: Daily learning activities will introduce and reinforce key course concepts. These include: • Daily Warm up problems | | - Small group investigation activities to introduce new concepts.Partner activities to work through example problems reinforcing new topics. - Partner assignments in which students work together to construct their knowledge of key concepts. - "Guest teacher" presentations in which students teach mini-lessons on specific topics or problems. Teacher led discussion to introduce or reinforce key concepts or skills. - Investigation activities using graphing calculators and geometer's sketchpad - Almost nightly homework assignments ***See Canvas for more detailed outlines of class work, including course documents ## **SLA Math Department Standards:** A-Computation and operations--Students can perform computational and algebraic operations to the appropriate level of course. B-Visual-- Students can visually represent mathematical situations through graphs and diagrams. C-Verbal and written communication skills-- Students can clearly communicate mathematical problem solving process. D-Problem solving- Choose and apply various problem-solving strategies to model and solve a wide variety of problems. ## **Unit 6: Similarity & Proportions** - 34 D Can determine similarity using shortcuts - 35 D Can use similarity to calculate missing parts - 36 D Use triangle similarity to solve application problems - 40 A Use knowledge of similar figures to calculate ratio of sides, area and volume ## PA Common Core Standards Covered: #### The Standards of Mathematical Practices - Make sense of problems and persevere in solving them. - Reason abstractly and quantitatively. - Construct viable arguments and critique the reasoning of others. - Model with mathematics. - Use appropriate tools strategically. - Attend to precision. - Look for and make use of structure. - Look for and express regularity in repeated reasoning. ## **PA Common Core Standards Covered:** - *CC.2.1.HS.F.3* Apply quantitative reasoning to choose and interpret units and scales in formulas, graphs, and data displays. - CC.2.3.HS.A.5 Create justifications based on transformations to establish similarity of plane figures. - CC.2.3.HS.A.6 Verify and apply theorems involving similarity as they relate to plane figures - CC.2.3.HS.A.13 Analyze relationships between two-dimensional and three-dimensional objects - CC.2.3.HS.A.14 Apply geometric concepts to model and solve real world problems. #### **Goals/Activities by Week** Week 1 (2/24/14 - 2/28/14) - only 1 day - Similarity shortcuts - Similarity practice #### Week 2 (3/3/14 - 3/7/14) - Indirect Measurements - Shadow method - o Mirror method - Stick method - Word problems (indirect measurements) - Mirror Lab investigation #### Week 3 (3/10/14 - 3/14/14) - BM work time - Similarity Review - Similarity Quiz ## Week 1 (2/25/13) 4 days - Quiz from Unit 5 (Standards 37, 38, 39, 41) - Ratios and Proportions - Quiz Corrections/Review - Similar triangles ## Week 2 (3/4/13) 4 days - Indirect measurements? - Introduce BM - Mirror - BM work time # Week 3 (3/11/13) 4 days • BM work time ## Week 4 (3/18/13) 4 days - Day 1 BM due; Longer warm-up/application problem, BM reflection period - Day 2 Review for quiz 5.2 - Day 3 Quiz 6.1 (Standards 34, 35, 36) - Day 4 Area & Perimeter investigation