
eroman@chromium.org
Last updated: May 24, 2016

Extract a NetLog viewer WebApp from
chrome://net-internals/ (crbug.com/472699)

Proposal

Pull out all of the code for NetLog loading from Chromium’s chrome://net-internals/, and move it
to a separate repository on GitHub.

This has the immediate benefit of:

●​ Reducing Chrome’s installer size (which will no longer have the HTML/CSS/Javascript
code for these bits of chrome://net-internals)

●​ Reducing the attack surface posed by the WebUI chrome://net-internals code

In the long term, it may also offer these advantages:

●​ Can make the NetLog viewer great again by developing it outside of the Chrome
repository [1]

●​ Can use the NetLog loading capabilities independently of Chrome (i.e. load up a web
page on any supported browser and view a NetLog)

●​ Can define a general library of code for working with NetLog files that can be reused in
other applications (i.e. log file analysis independent of the provided UI).

[1] Developing code as a WebUI as part of Chromium is not pleasant. It is a much more
restricted development paradigm that limits what Javascript libraries, technologies, and
subresource sizes can be included, and breaks the fast edit-refresh pattern of web development
(i.e. all of the downsides of Javascript/HTML with none of the benefits!). Removing these
limitations may lead to a renaissance of capabilities.

Background and Motivation

Chrome currently has a WebUI internal page, chrome://net-internals, which provides capabilities
for:

1.​ Loading saved files (NetLog dumps) for post-mortem analysis
2.​ Exporting NetLog dumps (a.k.a. captures) to a file
3.​ Real-time observing of network events
4.​ Various one-off actions that relate to networking, such as configuring HSTS, clearing

DNS caches, clearing socket pools.

mailto:eroman@chromium.org
https://code.google.com/p/chromium/issues/detail?id=472699

This is a large chunk of javascript and HTML, that runs with elevated privileges, and ships with
Chrome. The vast majority of the WebUI code is for loading and displaying NetLog dumps, (and
doesn’t need a privileged context).

The problems with the current design are:

●​ Size bloat. chrome://net-internals and all of its Javascript/HTML is shipped with
Chromium adding to its installation size (even though very few users will use it; also it is
not internationalized…)

●​ Security risk. chrome://net-internals (and other WebUI pages for that matter) expose
additional attack surface. In fact the use of chrome://net-internals combined with some
other bugs was used in the past for a p0wnium exploit.

●​ Architectural inflexibility. Because chrome://net-internals is part of Chromium, there
are a number of artificial barriers in its implementation (like being unable to depend on
external Javascript libraries or toolchains).

●​ Lack of portability and extensibility. The NetLog display code is tightly coupled to the
Chrome binary. It cannot be used on other browsers, nor can its code be shared for
non-browser applications. It also doesn’t load well or at all on mobile.

Implementation details

Let’s review again the different capabilities of today’s chrome://net-internals/:

1.​ Loading saved files (NetLog dumps) for post-mortem analysis
2.​ Exporting NetLog dumps (a.k.a. captures) to a file
3.​ Real-time observing of network events
4.​ Various one-off actions that relate to networking, such as configuring HSTS, clearing

DNS caches, clearing socket pools, export ChromeOS system logs

This proposal has the following effects:

●​ Capability (1) is torn out and moved to a separate WebApp
●​ Capability (2) is completely removed -- it is superseded by chrome://net-export/
●​ Capability (3) is abandoned -- there are ways to bring this back that will be discussed

later, but as a first iteration this feature will simply be lost.
●​ Capability (4) is currently a grab-bag of mismatched features. It will need to be

re-thought and fixed with time, but as part of this transition all of those capabilities will be
left as-is.

Concretely, all of the following views will be deleted:

●​ chrome://net-internals/#capture
●​ chrome://net-internals/#export

https://code.google.com/p/chromium/codesearch#chromium/src/chrome/browser/resources/net_internals/&sq=package:chromium
https://bugs.chromium.org/p/chromium/issues/detail?id=473179

●​ chrome://net-internals/#import
●​ chrome://net-internals/#events
●​ chrome://net-internals/#waterfall
●​ chrome://net-internals/#timeline

And at least in the short term, these will be left behind:

●​ chrome://net-internals/#hsts
●​ chrome://net-internals/#httpCache
●​ chrome://net-internals/#alt-svc
●​ chrome://net-internals/#http2
●​ chrome://net-internals/#quic
●​ chrome://net-internals/#sdch
●​ chrome://net-internals/#modules
●​ chrome://net-internals/#bandwidth
●​ chrome://net-internals/#dns
●​ chrome://net-internals/#sockets
●​ chrome://net-internals/#alt-svc
●​ chrome://net-internals/#prerender

It is beyond the scope of this design document, however the views highlighted in orange are
also good candidates to move out of chrome://net-internals in the future and can comfortably
live in the NetLog viewer application. However more work will be needed to transition these.
Notably (a) enable real time (or close to realtime) viewing of NetLog stream from the WebApp
version (b) expose these panel’s data as regular events in the NetLog stream (whereas today
they work by polling the browser’s current state).

#hsts offers capabilities that go beyond viewing state (i.e. can modify HSTS), and will not be
extractable. Similarly #httpCache offers a browser for the current cached files which will not be
directly transferrable to an external WebApp (however may be worth just killing).

High level architecture after the refactor

The workflow now resembles this….

When writing NetLog dumps, the browser writes the event stream directly to a file:

https://bugs.chromium.org/p/chromium/issues/detail?id=620506

Once the capture has completed (or potentially while it is still in progress), the data can be
loaded into the standalone visualizer application.

The difference is that now the visualizer application is no longer running as part of
chrome://net-internals, but as a separate webapp (or native app, or whatever else you wanted).

The WebApp can use the FileAPI to read the NetLog dump’s contents from disk.

High level architecture before the refactor

Here is how things work today (before the refactor).

The browser process runs the network stack, and generates a stream of events from C++.
These events are serialized to JSON and forwarded to a WebUI renderer process running
chrome://net-internals/ Javascript code:

This renderer process receives the data and buffers it in memory (capture). It simultaneously
updates views of the data (real-time visualization). This consumes a surprising amount of
memory and CPU for all the Javascript and DOM objects. It is common for long running
chrome://net-internals captures to crash thanks to running out of memory (and why there is a
check box on #capture to limit the data kept)

While this capture is ongoing, the user can choose to save the data to a file:

Now that a file has been saved, it can be exchanged with other developers who can
subsequently load it into their chrome://net-internals/ to explore the captured data:

Where will the new code live?

As a separate project hosted on GitHub (under the GoogleChrome umbrella).

What about real-time inspection of network activity?

Proper real-time support will be no more with this model.

At least after the initial transition.

However near real-time can be approximated grafted on. It will be a separate project to figure
out how best to do that. Some brainstorming to demonstrate that it is possible to accomplish this
in the new architecture (even if not elegant):

●​ Hack #1: User can keep re-loading the file (which may be changing as more data is
being written to it). Dumb, but requires no extra work.

●​ Hack #2: Can automate the above so it is transparent to the user, but achieves some
granularity of real-time by polling. This assumes the File API treats file handles as a
persistent entity rather than snapshots into a view of the file at a particular time (wasn’t
clear from spec, need to experiment)

●​ Hack #3: If not possible through the File API, could create a simple python server that
you run locally and exposes the log file changes through an http://localhost interface. Not
clean, but does show that at the extreme it is possible.

Why not use an extension API to preserve the real-time
capabilities?

An alternate design is to make the NetLog event stream something directly observable by
Chrome extensions. This means that the real-time viewing capabilities can be preserved
unchanged.

I don’t think this is the right approach for several reasons:

●​ Yet another extension API (with very narrow appeal)
●​ We want to move towards writing NetLog files directly to disk and have that be the

canonical backing store rather than letting in-application consumers observe it directly
(as that is the common interface used between desktop and mobile).

●​ Would be a Chrome-only solution

https://github.com/GoogleChrome
http://localhost

●​ Writing as an extension is less hackable (personal anecdote)

	Extract a NetLog viewer WebApp from chrome://net-internals/ (crbug.com/472699)
	Proposal
	Background and Motivation
	Implementation details
	High level architecture after the refactor
	High level architecture before the refactor
	Where will the new code live?
	What about real-time inspection of network activity?
	Why not use an extension API to preserve the real-time capabilities?

