
Intro to D3.js: Making a Chart

What is D3?
D3 stands for Data Driven Documents. It is a JavaScript library developed by Mike Bostock that
is designed to manipulate documents based on data, allowing the user to create rich and
dynamic visualizations using web standards of HTML, SVG, CSS, and JavaScript. The library is
well developed, and very popular among Data Analysts and Data Visualization Specialists.

It is perhaps easier to describe D3 by detailing what it is not. You've probably come across
standard plotting libraries; ggplot2 or shiny for R, Excel's built-in plotting functions, matplotlib in
Python... these are libraries that make it easy to do particular kinds of plotting. They will have
built-in functions to make producing certain kind of graphics very simple. Generating a complete
bar chart might require only one line of code, or the click of one button.

This is not the case in D3. D3 is output-neutral; this means that every graphic requires quite a
bit of explicit coding to give direction to our web browser. On the one hand, this means that
producing even simple graphics will at first seem very laborious. On the other hand, because D3
is not prescriptive, you can quite literally do anything with it. Where dedicated plotting and
mapping libraries break down quite quickly when you want to do something other than what
they're intended to do, D3 will have no complaint when you try to push at the edges.

Think of it as a very fancy tool that you have to learn to operate, telling it what to draw, what
data to base the drawing on, and which document to manipulate.

Web Page Documents and Assets

To describe how D3 works, first consider what we mean by the term Documents. A webpage is
a collection of documents sitting on your web server. The web server has an address on the
World Wide Web that other computers can navigate to. When a visitor navigates to your
address, their browser will request one or more documents. These documents describe to their
browser what to display, how to display it, where to get data from that aids in the display, and
when to execute events such as user clicks. A basic webpage could contain a series of text
documents that contain code written to structure the webpage (HTML), style that page (CSS),
and add dynamic elements (JS). Webpages will often have many assets, including images,
data, and other supplemental material that makes the page display and function properly.

1

http://d3js.org/
https://twitter.com/mbostock

How D3 Works

When working with D3, you are creating and manipulating elements within web documents. For
example, the D3 JavaScript library will find a div element in your page, bind a dataset to it, then
set attributes of that element according to values in the dataset. It might dynamically update the
element based on, for example, a user click or a change in the dataset.

D3 is, indeed, data-driven; this means that changes on your web page are generated by data
that you are expected to 'bind'. D3 can work with just about any element found on your webpage
and modify it by binding data to that element and setting attributes of that element accordingly.
The data drives the document. For example, D3 can be used to generate an HTML table from
an array of numbers, or you can use the same data to create an interactive bar chart with those
same numbers. Events you connect to these elements allow for interaction with the data1.

Just what does this mean? Take a look at a sample dataset. D3 allows these data to be
attached to elements in our document.

City # of Rats

Brookline 40

Boston 90

Cambridge 30

Somerville 60

2

https://observablehq.com/@cesandoval/d3js.com

The Key to D3 is Understanding SVGs

The primary element you will find yourself working with is the SVG, or the Scalable Vector
Graphic. SVG is an XML-based, web-friendly vector image format. It also provides support for
animation and interactivity. SVG is unique in that all of the behaviors and components of the
SVG images can be accessed from JavaScript and CSS just like any other element in a
webpage. We use D3 we bind data to SVG elements.

SVG’s are HTML elements that can be given attributes like anything else in the DOM.

About SVG: SVG stands for “Scalable Vector Graphic” and you can use SVGs to create
graphics (shapes, lines, etc.) on websites. D3 visualizations are based on SVGs. For example,
in D3 bar charts are based on a series of rectangles, scatter plots include a series of circles, line

3

https://en.wikipedia.org/wiki/Scalable_Vector_Graphics
https://en.wikipedia.org/wiki/Scalable_Vector_Graphics

charts consist of a series of lines, etc. When you make a visualization in D3, you’ll be combining
SVG shapes to make a compelling visual.

SVG Coordinate system: SVGs are based on a grid with X and Y coordinates. You assign X
and Y values to determine the position of the shape, measured in pixels. Unlike the
mathematical grid we’re used to, with SVGs the starting point (0, 0) is at the top left. When you
create SVGs on a “canvas”, you always set the starting point for the shape based on
coordinates. If you want a circle at the top left of the canvas, you set X = 0 and Y = 0. If you
want a circle inset by 100 pixels both vertically and horizontally, you set X = 100 and Y = 100.

Working with Scalable Vector Graphics (SVG)

As already mentioned SVGs are page elements that can sit right within the body of your page
and can be manipulated like any other element in the Document Object Model. The following
shows the layout of three circles in the DOM, and how they will appear in our browser.

Circles with SVG: diagram based on Three Little Circles, by Mike Bostock.

4

http://bost.ocks.org/mike/circles/

Rectangles with SVG.

Note that 0,0 is in the upper left corner of the SVG element, and all child elements are located in
relation to this parent element. For further reading and an excellent tutorial on SVG and D3, see
Three Little Circles, by Mike Bostock, for a fantastic tutorial on SVG creation and manipulation 2.

For more on SVG, its capabilities and available elements, check out the documentation.

A note about comments

Using comments allows you to document your code. They are very useful when sharing code,
or even when going back to your own code after a while. It is good practice to comment your
code. We can have single or multi-line comments.

Single-line comments start with two forward slash characters (//) and extend to the end of the
physical line. A comment may appear at the start of a line or following whitespace or code.

Multiline comments can be helpful to write out a header providing a longer description of a
program. These are opened using /* and closed using */.

5

http://bost.ocks.org/mike/circles/
https://developer.mozilla.org/en-US/docs/Web/SVG

Let’s Get Started!

In this exercise, you will create a chart that will help explain what we mean by driving a
document with data.

Connect a Simple Dataset into SVG Elements Using D3

As mentioned, D3 operates with a goal of binding data to elements on our page. D3 will allow us
easy access to these elements, we can use D3 to give the height to the element.

Step 1: Open d3example.html in your text editor and web browser​

Step 2: Add D3 library to the d3example.html file using the following code inside your <head>
tags:

<script src="https://d3js.org/d3.v5.min.js"></script>

To begin, we will manually code our data. For illustration, let’s say we have a dataset with the
following values (the same as the data in the table above).

exData = [40, 90, 30, 60]

Step 3: Add the following code between your <script> tags at the bottom of the page. :

exData = [40, 90, 30, 60]

We want a bar chart, with the height of each bar as the respective value in the dataset. (i.e. The
first bar has a height of 40 pixels, etc.). To do so, we must bind data to an SVG object using
select statements, as well as the data and attr methods.

Working with Selections

A D3 selection is an array of previously defined elements and follows the same guidelines as
CSS. The selection process lets D3 select elements from the document so that operators can
be to the elements, telling them to do stuff. D3 has select() and selectAll() methods to find single
or multiple DOM elements, respectively.

{
d3.selectAll("circle"); // select all SVG circle elements
d3.select("#boston"); // select an element where id='boston'
d3.selectAll(".bar"); // select all elements with the class 'bar'

6

https://github.com/d3/d3-selection/blob/master/README.md#select
https://github.com/d3/d3-selection/blob/master/README.md#selectAll

}

Since selectAll("circle") finds multiple elements, everything in the chain following this will be
happening to each of those elements. Using this will iterate through each of the elements on the
page that we are binding data to.

SelectAll Iteration

The selectAll method iterates through the data values one by one. Going one by one, data
values are returned to the DOM. This ultimately allows for functions and operations to be
performed on each data value. The order, unless specified in another way, will be from top to
bottom down you page.

For more on working with selections and the options available, check out the documentation.

Additional recommended reading on selections from Mike Bostock's How Selections Work.

To make a bar chart, we must also use the data and attr methods.

The data() method

The data() method is the very soul of D3. With it, an array of data is bound to page elements.

The attr() method

The attr() method allows us to set attributes of the page elements. In this example, we set the
height, width, color, and x/y location attributes.

Anonymous Functions

In our code we set height to an anonymous function. These can be a bit confusing, so let's dig
into what this means.

Step 4: Add the following code between your <script> tags.

var svg = d3.select("div#main")
 ​ .append("svg")
 ​ .attr("width", width)
 ​ .attr("height", height);
 svg.selectAll("rect")
 ​ .data(exData)

7

https://github.com/d3/d3-selection/blob/master/README.md#selectAll
https://bost.ocks.org/mike/selection/
https://github.com/d3/d3-selection/blob/master/README.md#selection_data
https://github.com/d3/d3-selection/blob/master/README.md#selection_attr

 ​ .enter()
 ​ .append("rect")
 ​ .attr("height", d => d)

The argument d that is being passed to the function represents our dataset. The anonymous
function has a parameter for the data values you just bound to your page elements in the data
statement. This is built into D3. The name of this variable (d) is arbitrary, but d is usually used as
it represents a data value.

The data you bind to your page elements is an object in itself. In this example, d is our object
that can be operated on locally within this function. If our data object has properties, you can
refer to these properties in this step. For example, if our dataset is a JSON, with two properties,
number of rats (number) and city (city), we can reference it as we would in any other JavaScript
object. i.e. d.number.

Step 5: Add the following code between your <script> tags (add the portion highlighted in
yellow):

var width = 350;
var height = 175;
var barWidth = 50;

var svg = d3.select("div#main")
 ​ .append("svg")
 ​ .attr("width", width)
 ​ .attr("height", height);
 svg.selectAll("rect")
 ​ .data(exData)
 ​ .enter()
 ​ .append("rect")
 ​ .attr("height", d => d)
 ​ .attr("x", (d,i) => i*barWidth + 50)
 ​ .attr("y", 0)
 ​ .attr("width", barWidth)
​ .attr("fill", "red");

8

Your results should look as follows:

Things just got a little weird. Did we just select a bunch of rectangle elements that don't exist?
Well, yes... kinda. With D3, you always have to first select what you are going to be operating
on, even if it doesn't yet exist. This is a bit abstract, but hang with me, the next steps will explain
this more.

What we did is select a bunch of rectangles that are not there, so we get an empty selection.
The next few lines of code in our block above create these elements by binding data, using the
enter(), and appending a new element.

1.​ data() - We bind the data to our empty selection using the data() method, it will return the
four data values in our dataset.

2.​ enter() - When we load data, it will iterate through the dataset and apply all methods that
follow to each of the values of our dataset. The enter() method creates placeholders for
each data element for which no corresponding DOM element was found. Because it
iterates, it will create four placeholders.

3.​ append() - Finally, the append("rect") method will insert a rectangle into each of the
placeholders that do not have a "rect" element, which is all of them.

4.​ attr() - Iteratively sets attributes, such as (x,y) location, width, and height for each of the
rectangle elements. Right now, these are all in the same location (0,0) and have the
same width (20) and height (100). We need to use functions to make this work properly,
and will detail that next.

Save and refresh your document. You should see this... pretty boring, but if you see this it is
working! You have four rectangles, but they are all in the same location.

9

https://github.com/d3/d3-selection/blob/master/README.md#selection_data
https://github.com/d3/d3-selection/blob/master/README.md#selection_enter
https://github.com/d3/d3-selection/blob/master/README.md#selection_append

Working with the Enter and Exit methods

The enter() and exit() methods deal with new elements and unused elements, respectively,
based on incoming data. It's worth taking a minute to fully grasp these!

The enter() method tells D3 what to do when there are more elements in a data array than there
are elements in the selection. So if you have 12 rows in an input dataset but only 8 rect
elements when the enter() method is invoked, D3 will go to what follows the enter() method to
determine what to do. Usually, the enter function will be used to create (append()) new elements
to a given visualization.

The exit() method tells D3 what to do when there are more elements in a data array than there
are elements in a selection. Usually, this will be used to clear elements that are no longer
needed. You can think of these like the 'go' and 'stop' methods, where enter() is the former and
exit() is the latter.

Styling the rect Elements

Finally, we properly size and arrange the rect elements. To do this, we can modify the height
attribute and x and y attributes for each of our rectangle elements. The attributes can read
functions that allow us to dynamically change attributes based on the data value of the current
iteration.

So, let's update the attributes to properly display the “rect” elements by changing the x attribute
and height attribute. This will look familiar! It is exactly how we assigned a height in the previous
example.

Step 6: Change the code to look like the following:

var width = 150;
var height = 175;

var svg = d3.select("div#main")
 ​ .append("svg")
 ​ .attr("width", width)
 ​ .attr("height", height);
 svg.selectAll("rect")
 ​ .data(exData)
 ​ .enter()

10

 ​ .append("rect")
 ​ .attr("height", d => d)
 ​ .attr("x", (d,i) => i*25 + 30)
 ​ .attr("y", 0)
 ​ .attr("width", 20)
​ .attr("fill", "steelblue");

Your results should look as follows:

Setting the x attribute

You notice here a second argument is provided to our anonymous function (i). This represents
the index location of the data value referred to in the d argument. You are looping through the
index as you add the attributes, so i in this case has 4 index values.

Here we space the bars horizontally using the second i argument. The i argument is the index of
each bar in the selection as the code iterates through. For our four rectangles, i here will be 0,
1, 2, and 3, giving us x positions of 0, 25, 50, and 75.

Setting the height attribute

The d argument is the data value for each piece of data. The function will return the value for
each rectangle based on the data value, setting the height attribute equal to the data value for
each respective rectangle.

11

Setting the fill attribute

Let’s color our chart while we are at it. Set the fill attribute to the color of your choice. I used
steelblue. This attribute will take web standard colors. Look up some Hex codes and pick your
favorite color, or just use steelblue.

In Class Example

Modify the previous code and use different height and width values for your chart. For example,
you can make your bars wider, or multiply the heights by a constant.

Design the Chart

As is, this chart is not very useful. In fact, it is just four rectangles. We need to add some
context, re-justify the bars, and perhaps add some axes. We can do this right in our script by
adjusting the attributes and properties of the SVG elements. In the following steps, we’ll add
those axes and label.

Bottom-justify the Bars

The chart is confusing. The higher the number the farther down the page the bar extends. We
can change this quite easily by adjusting the value of the y attribute. See the adjustment to our
code below.

var width = 150;
var height = 175;

exData = [40, 90, 30, 60]

 ​ var svg = d3.select("div#main")
 ​ .append("svg")
 ​ .attr("width", width)
 ​ .attr("height", height);
 svg.selectAll("rect")
 ​ .data(exData)
 ​ .enter()
 ​ .append("rect")
 ​ .attr("height", d => d) // Set height of rectangle to data value

12

https://developer.mozilla.org/en-US/docs/Web/CSS/color_value
https://developer.mozilla.org/en-US/docs/Web/CSS/color_value

 ​ .attr("x", (d,i) => i*25 + 30)
 ​ .attr("y", d => height-d) // Set y coordinate for each bar to height minus the data value
 ​ .attr("width", 20)
​ .attr("fill", "steelblue");

Your results should look as follows:

In Class Example

Modify the previous code and use a different color for the bars.

Add Labels

This will provide a bit more context, and add axes to the map along the left side and bottom.
When finished, our chart will look like this. Let’s take a look.

13

Add the X and Y axes

A simple method of doing this is to add SVG line elements to our script. We can manually set
the X and Y coordinates for the start and end of the line, along with the stroke and width.

Add a Label

There are ways when working with numbers to automate this, but for now, let’s create one label
by adding text elements to our svg element. We can also use some CSS in style tags to modify
your font.

var width = 150;
var height = 175;

exData = [40, 90, 30, 60]

 ​ var svg = d3.select("div#main")
 ​ .append("svg")
 ​ .attr("width", width)
 ​ .attr("height", height);
 svg.selectAll("rect")
 ​ .data(exData)
 ​ .enter()
 ​ .append("rect")
 ​ .attr("height", d => d) // Set height of rectangle to data value

 ​ .attr("x", (d,i) => i*25 + 30)
 ​ .attr("y", d => height-d) // Set y coordinate for each bar to height minus the data value
 ​ .attr("width", 20)
​ .attr("fill", "steelblue");

// Create y-axis
svg.append("line")
​ .attr("x1", 30)
​ .attr("y1", 75)
​ .attr("x2", 30)
​ .attr("y2", 175)
​ .attr("stroke-width", 2)
​ .attr("stroke", "black");

14

// Create x-axis
svg.append("line")
​ .attr("x1", 30)
​ .attr("y1", 175)
​ .attr("x2", 130)
​ .attr("y2", 175)
​ .attr("stroke-width", 2)
​ .attr("stroke", "black");

 // Add a Label
 // y-axis label
 svg.append("text")
​ .attr("class", "y label")
​ .attr("text-anchor", "end")
​ .text("No. of Rats")
​ .attr("transform", "translate(20, 20) rotate(-90)");

What happens if our array changes size?

Data can change. What if your number of data values changes? Or the value of the maximum
data value changes? There are two different methods for this. One is to manually change your
scales / axis, etc., and the other is to use the D3 Domain and range methods (which we’ll learn
later). We will use a combo of the two in our example.

15

Let’s add a few more elements to our data array and update some other parts of our code - here
is an example of manually making updates:

var width = 450;
var height = 175;

exData = [40, 70, 60, 20, 40, 100, 60];

var svg = d3.select("div#main")
 ​ .append("svg")
 ​ .attr("width", width)
 ​ .attr("height", height);
 svg.selectAll("rect")
 ​ .data(exData)
 ​ .enter()
 ​ .append("rect")
 ​ .attr("height", d => d)
 ​ .attr("x", (d,i) => i*25 + 30)
 ​ .attr("y", d => height-d)
 ​ .attr("width", 20)
 ​ .attr("fill", "steelblue");

// Create y-axis
svg.append("line")
​ .attr("x1", 30)
​ .attr("y1", 75)
​ .attr("x2", 30)
​ .attr("y2", 175)
​ .attr("stroke-width", 2)
​ .attr("stroke", "black");

// Create x-axis
svg.append("line")
​ .attr("x1", 30)
​ .attr("y1", 175)
​ .attr("x2", 230)
​ .attr("y2", 175)
​ .attr("stroke-width", 2)
​ .attr("stroke", "black");

 // Add a Label
 // y-axis label

16

 svg.append("text")
​ .attr("class", "y label")
​ .attr("text-anchor", "end")
​ .text("No. of Rats")
​ .attr("transform", "translate(20, 20) rotate(-90)");

Your results should look as follows:

Add Simple Hovering

In the last step in this exercise, we are going to label the bars of our chart and show the number
of rats. Let’s do this by adding a hover tooltip.

The hover tooltip is created in two steps.

1.​ Using D3, create a DIV element for the tooltip and set it to be hidden
2.​ Use mouse event listeners (mouseover and mouseout) to listen for hover and set

properties of the tooltip DIV element

Create the Tooltip div element

Add the following code to your <body> element (you can put this above the div with id=”main”):

17

<div id="tooltip" class="hidden">

 <p>100</p>

 ​ </div>

Next, add CSS styles to add and style the tooltip:

 <style>
 ​ #tooltip.hidden {
 ​ ​ ​ display: none;
 ​ ​ }

 ​ #tooltip {
 ​ ​ ​ position: absolute;
 ​ ​ ​ width: 100px;
 ​ ​ ​ height: 65px;
 ​ ​ ​ padding: 5px;
 ​ ​ ​ background-color: white;
 ​ ​ ​ border: solid gray 1px;
 ​ ​ ​ z-index:10;
 ​ ​ }
</style>

About adding Event Listeners for mouse action to the rectangle generating
method

Locate the method in which we create the rectangles based on the data. Here we need to add
methods that listen for mouse events and modify the tooltip div based on the mouse event.

1.​ Set the tooltip to display on mouseover,
2.​ Set it move with the mouse on mousemove,

18

3.​ And, hide it on mouseout.

Next, modify your code to include event listeners, and add to your dataset to include
label text:

var width = 450;
var height = 175;

exData = [[40,"forty rats"], [70,"seventy rats"], [60,"sixty rats"], [20,"twenty rats"], [40, "forty
rats"], [100,"one-hundred rats"],[60,"sixty rats"]];

var svg = d3.select("div#main")
 ​ .append("svg")
 ​ .attr("width", width)
 ​ .attr("height", height);
 svg.selectAll("rect")
 ​ .data(exData)
 ​ .enter()
 ​ .append("rect")
 ​ .attr("height", d => d[0])
 ​ .attr("x", (d,i) => i*25 + 30)
 ​ .attr("y", d => height-d[0])
 ​ .attr("width", 20)
 ​ .attr("fill", "steelblue") ​
 ​ .on("mouseover", function(d) {
 ​ ​ ​ ​ ​ d3.select("#tooltip")
 ​ ​ ​ ​ ​ .style("left", d3.event.pageX + "px")
 ​ ​ ​ ​ ​ .style("top", d3.event.pageY + "px")
 ​ ​ ​ ​ ​ .select("#value")
 ​ ​ ​ ​ ​ .html("<p>" + String(d[1]) +"</p>")
 ​ ​ ​ d3.select("#tooltip").classed("hidden", false);
 ​ ​ ​ })
 ​ ​
 ​ ​ ​ .on("mouseout", function() {
 ​ ​ ​ ​ d3.select("#tooltip").classed("hidden", true);
 ​ ​ ​ });

19

Your chart should look similar to the following:

There we have it!

Exhausted? You should be, we just covered a lot! These are some basics of D3, displaying how
to work with a simple array dataset, bind that dataset to an SVG, and create SVG elements that
are encoded with our data. We have merely scratched the tip of the iceberg, but we'll spend
next week building on what we talked about today.

20

	Intro to D3.js: Making a Chart
	What is D3?
	Web Page Documents and Assets
	How D3 Works
	Working with Scalable Vector Graphics (SVG)
	A note about comments
	Let’s Get Started!
	Connect a Simple Dataset into SVG Elements Using D3
	Working with Selections
	Working with the Enter and Exit methods
	Styling the rect Elements

	In Class Example
	Design the Chart
	Bottom-justify the Bars

	In Class Example
	Add Labels
	Add the X and Y axes
	Add a Label

	What happens if our array changes size?
	Add Simple Hovering
	
	Create the Tooltip div element
	About adding Event Listeners for mouse action to the rectangle generating method

	There we have it!

