

Life Sciences, Grade 11, Biodiversity of Animals

Definitions

- **Symmetry**: The arrangement of parts around a central axis or plane.
- Asymmetrical: Having no symmetry.
- Cephalisation: The concentration of sensory organs and a brain at the anterior (head) end of an organism.
- **Diploblastic**: Having two primary germ layers (ectoderm and endoderm).
- **Triploblastic**: Having three primary germ layers (ectoderm, mesoderm, and endoderm).
- **Coelom**: A fluid-filled body cavity completely lined by mesoderm.
- Acoelomate: An organism without a body cavity.
- Pseudocoelomate: An organism with a body cavity not fully lined by mesoderm.
- **Coelomate**: An organism with a true coelom.
- **Protostome**: An animal in which the blastopore (first opening in embryo) develops into the mouth.
- **Deuterostome**: An animal in which the blastopore develops into the anus.
- **Through gut**: A digestive system with two openings, a mouth and an anus, allowing for continuous digestion and excretion.
- **Grazer niche**: A role in an ecosystem for organisms that feed on plants.
- **Biological parasitic wasp**: A type of wasp used in biological control to lay eggs in pests, controlling their population.
- **Pollination**: The transfer of pollen, essential for plant reproduction.

Concepts:

General Animal Classification

• Invertebrates: Porifera, Cnidaria, Platyhelminthes, Annelida, Arthropoda

• Vertebrates: Chordata

• Five Kingdom System:

- 1. Monera
- 2. Protista
- 3. Fungi
- 4. Plantae
- 5. Animalia

• Human Classification:

o Kingdom: Animalia

o Phylum: Chordata

o Class: Mammalia

o Order: Primates

o Family: Hominidae

o Genus: Homo

o Species: sapiens

Key Characteristics for Animal Classification

• Symmetry:

- o Possibility of dividing an animal in one or more directions and getting two identical halves
- Radial Symmetry: Body parts arranged around a central axis (e.g.,
 Cnidaria). more than one plane of symmetry

- o **Bilateral Symmetry**: Body can be divided into two equal halves along a single plane (e.g., Platyhelminthes, Annelida, Arthropoda, Chordata).
- o **Asymmetry**: No symmetry, permanently attached to a substrate \square sessile (e.g., Porifera).

• Cephalisation:

- Presence of a definite head containing sensory organs that face the direction the animal moves in (ability to respond to changes in environment)
- o The more complex an animal's body is, the greater need for nervous tissue to receive and interpret sensory information
- o Absent in Porifera, Cnidaria.
- o Present in others like Platyhelminthes, Annelida, Arthropoda, Chordata.

Tissue Layers (Germ Layers):

- o In early development of embryo, circular layers of cells develop
- o **Diploblastic**: 2 germ layers (Ectoderm and Endoderm). Only Cnidaria and Porifera.
- o **Triploblastic**: 3 germ layers (Ectoderm, Mesoderm, Endoderm). All other phylums.
 - Advantage: can develop organs □ can grow larger and move to ore varied habitats

• Coelom:

- o Body cavity between endo- and mesoderm in all triploblastic organisms
- o Between body wall and internal organs keeps them seperate
- o **Acoelomate**: No body cavity (e.g., Platyhelminthes).
- o **Pseudocoelomate**: False coelom (between endo and mesoderm), not fully lined by mesoderm (e.g., Nematoda).

o **Coelomate**: True coelom, fully lined by mesoderm (e.g., Annelida, Mollusca, Arthropoda, Chordata).

Functions of fluid in Coelom:

- May be hydrostatic skeleton
- Fluid used to circulate substances such as gases, nutrients, and wastes
- Space may be used to store excess fluids and waste
- Sperm and eggs can mature here

Advantages of a coelomate plan:

- Allows animals to become larger more space for organs to develop
- Body wall and organs behave independently of each other (organs don't move with body walls)
- Provides hydrostatic skeleton in soe phyla (helps animals move and burrow in liquid)
- Fluid helps transport food, oxygen and wastes

• Presence or Absence of a Through Gut:

- o **Through gut:** Two openings, one for ingestions, the other for egestion
- o **Absent**: Cnidaria, Porifera, Platyhelminthes (have a blind gut one opening for ingestion and egestion).
- o **Present (first seen in Annelids)**: Arthropoda, Annelida, Chordata.
- o **Advantages of a through gut**: Allows digestion and excretion of more complex molecules, animals can grow larger and move to more varied environments.

o Surface area to volume ratio

- The ratio of Total Surface Area: Volume is very important for land mammals
 - They need to exchange gases between the air and their blood and between blood and tissues

- A high TSA:V ratio is most effective gaseous exchange surface for diffusion
- Gaseous exchange takes place by diffusion and needs surface with:
 - Large SA:V ratio
 - Transport system close by
 - Thin for gases to diffuse across

Phylum Porifera: The Sponges

• Characteristics:

- o Cannot move (no muscles), sessile.
- o Filter feeders: capture suspended food particles by circulating water through their body cavity.
- o Asymmetrical.
- o Diploblastic.
- o No coelom or gut.
- o No cephalisation.

Phylum Cnidaria: Jellyfish, Bluebottles, Corals & Sea Anemones

Characteristics:

- o Have stinging cells (nematocysts) for defense and capturing prey.
- o Radial symmetry.
- o Diploblastic.
- o No cephalisation.
- o No through gut.

Phylum Platyhelminthes: Flatworms

• Characteristics:

- o Often parasitic
- o Bilateral symmetry.
- o Triploblastic.
- o Cephalisation: definite head with eyes.
- o Blind ending gut.

Phylum Annelida: Segmented Worms

• Characteristics:

- o E.g. Earth worms
- o Have segmented body parts (helpful for burrowing)
- o Coelomate with coelomic fluid acting as hydroskeleton (pseudocoel)
- o Bilateral symmetry.
- o Triploblastic.
- o Cephalisation.
- o Through gut (take in soil, extract food and pass soil out anus NB for soil systems aerate soil and return calcium to soil through calciferous glands).

Phylum Arthropoda: Insects, Spiders, Crabs

• Characteristics:

- Have many jointed legs, a segmented body, exoskeleton made of chitin, waterproof cuticle, coelom
- o Bilateral symmetry.
- o Triploblastic.
- o Cephalisation.

o Through gut.

Invertebrates in Agriculture

- Invertebrates play major roles in ecosystems and agriculture.
- 1. **The Grazer Niche**: Dominant grazers that control plant growth (e.g., locusts, harvester termites).

2. Decomposition and Recycling:

- o Fly larvae eat carcasses.
- o Earthworms recycle faeces, acting as fertilizer.
- o Fungi recycle dead organic matter.
- 3. **Soil Fertilisation**: Dung beetles move dung underground, fertilizing the soil.
- 4. **Soil Aeration**: Termites, ants, and earthworms dig tunnels, allowing air to enter the soil, making it more fertile for crops.

5. Pest Control:

- o Farmers use biological control methods (e.g., parasitic wasps lay eggs in cabbage moth pests to destroy crops).
- o Predatory arthropods (e.g., spiders, ladybugs) feed on other arthropods, controlling prey population size.

6. Plant Pollination:

- o Allow plants to reproduce; some plants depend on a single species for pollination.
- o Examples: bees, butterflies, flying beetles.

7. Marketable Products:

- o Mopane worms: edible larvae harvested for food.
- o Honey: produced by bees; beekeepers farm bees.