Acid Base Indicator Lab

Homeostasis is the state of steady internal, physical and chemical conditions maintained by living systems. Maintaining this stable equilibrium is necessary for life due to proteins. Living things rely on proteins to regulate processes (enzymes), build internal structures (muscles, skin, etc.), transport material (cell membrane transport proteins), signal metabolic (bodily) activities (hormones), defend against antigens (antibodies), and much more. Proteins require a small window range where they work optimally. Increasing temperature above optimal or decreasing pH below optimal will result in the protein losing its function due to a change in its structure. This is called denaturation (the protein becomes denatured).

In today's lab we are going to test a strong base and a strong acid to see how two different indicators behave in these types of solutions. Chemical <u>indicators</u> are substances that give a visible sign, usually by a color change, of the presence or absence of a threshold concentration of a chemical. In today's short lab we will be testing phenolphthalein and universal indicator.

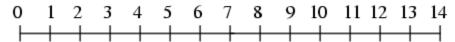
The diagram to the right models the organization of your test tubes

- Hydrochloric acid is a strong acid. Sodium
 Hydroxide is a strong base.
- Write down the colors before and after adding the indicators to the solutions in the chart below.

Instructions:

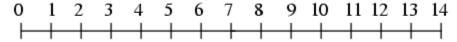
Pour test tube number 1 into test tube 3, record results.

Pour test tube number 7 into test tube 4, record results.

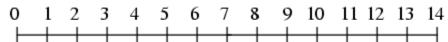

Pour test tube number 2 into test tube 5, record results.

Pour test tube number 8 into test tube 6, record results.

henolphthalein henolphthalein ydrochloric acid ydrochloric acid odium hydroxide niversal indicator	1	2	3	4	5	6	7	8
	phenolphthalein	phenolphthalein	hydrochloric acid	hydrochloric acid	sodium hydroxide	sodium hydroxide	universal indicator	universal indicator

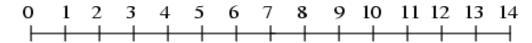

Solution	Color before adding either indicator	Color after phenolphthalein	Color after universal indicator
Hydrochloric acid (Acid)			
Sodium Hydroxide (Base)			

NEUTRAL


Draw the correct number line for neutral substances above and write the inequality here: _____

ACIDIC

Draw the correct number line for acidic substances above and write the inequality here: _____


BASIC

Draw the correct number line for basic/alkaline substances above and write the inequality here: _____

On the number line below, label acidic, basic, an neutral and then under it write what colors phenolphthalein and universal indicator will be in those substances

The pH scale

phenolphthalein		
Universal indicator		

Analysis Questions (check the box to the right to answer)	Denature	Work better	Change function	nothing	Not enough information
What will happen to a protein if you place it in a pH of 2?					
What will happen to a stomach enzyme if you place it in a pH of 2?					
What will happen to a protein in your blood if you place it in a pH of 2?					