
Submarine workflow

Xun Liu

UPDATE DATE UPDATE CONTENT

February 25, 2019 Draft system design

February 26, 2019 Add Typical use case

March 9, 2019 Add FlowView

March 10, 2019 Add JOB

March 10, 2019 Add Condition

March 10, 2019 Add Scheduler

March 11, 2019 Add Development Plan

March 18, 2019 Add Development Module

This is a system design to support workflow in submarine. It needs a lot
of discussion and modification. You can make comments or modify it
directly.

Because there are several interpreters in submarine, it is really helpful for data
analysts. A lot of data development is interdependent. For example, the development
of machine learning algorithms requires relying on spark to preprocess data, and so
on.

submarine should have built-in workflow capabilities. Instead of relying on other
software for scheduling, For several reasons:

1.​ Now we have upgraded from the age of data processing to the age of
algorithms, After submarine has own workflow, Will have a complete
ecosystem of complete data processing and algorithms operations.

2.​ Submarine have powerful interactive processing capabilities help algorithms
engineers improve productivity and work. submarine should give the algorithm
engineer more direct control. Instead of just doing the algorithm, let other
teams(or software) handle the workflow.

3.​ Submarine knows the data processing status better than Azkaban or Airflow.
So the built-in workflow will have better performance, Give users better
experience and control.

4.​ The most important thing is to form a closed loop of data.

Typical use case
Especially in machine learning, Because machine learning has a long workload.

A typical example is as follows:

1.​ First, obtain data from HDFS through spark;
2.​ Clean and transform data through sparksql;
3.​ Extract feature data through spark;
4.​ Write Tensorflow Machine Learnning algorithms through python;
5.​ Distributed model training through YARN or K8S;
6.​ Publish the model training and provide online prediction services;
7.​ Model prediction through streaming processing;
8.​ Receive incremental data through flink for incremental update of the model;

Therefore, submarine needs provide the ability to support workflow.

Flow view
Flow view includes three web pages: Graph, Configure and Executions.

Flow Graph

In the graph page, mainly perform the addition of the job and edit the dependencies
between the jobs.

1.​ Add workflow paragraph
○​ Add a paragraph in the node, use the %system.workflow keyword, after

execution will display a Graph view page.

○​ In the Text editing area of the note interface, you can directly write the
workflow content in YAML format.

○​ The drog and drop job node can update the text content.
○​ The workflow text content can be visualized in the graph view.
○​ Workflow Text and graph can be synchronized by variable binding.

2.​ workflow orchestration
○​ There is a [scheduler] starting point in the Graph View by default, The

[scheduler] is the scheduled configuration trigger point
○​ Click the [Add node] button to add a Job block to the Flow view .
○​ In the Job block, you can select note id and parpgraph id through the

drop-down box, and note title and paragraph title are displayed in node.
○​ There is a checkbox in front of the Job block, Indicates whether this

node is executed when the workflow is run.
○​ In Job block, you can use a single arrow segment to connect to other

nodes. For example: A -> B means B depends on A. After A is
executed, B can be executed.

○​ The dependencies between nodes can be multiple dependencies, for
example: A -> B, C-> B means B depends on A, and B also depends on
C.

○​ Job block can be dragged in the workflow view.
3.​ Job

○​ Each Job represents a paragraph in which the user has execute
permission

○​ Each Job can set the Condition field, the Condition is established, and
the Node is executed.

4.​ Menu
○​ Add Job : Add a job node in the workflow.
○​ Delete Job : Delete a job node in the workflow.
○​ Start Job : Run the current job node in the workflow. A progress bar is

displayed on the running job node graph.
○​ Start Job & child: Run the job node and all child jobs in the workflow.
○​ Cancel Job : Cancel running current job and all child jobs.

5.​ Job property
○​ When you select a Job node, the properties of the Job are displayed.

Each Job node can choose to execute the note and paragraph.
○​ If only note is selected, this means that the job will execute all the

paragraphs in the entire note in turn.
○​ If one or more paragraphs are selected, it means that the job will

execute the paragraphs in the specified note in turn.
○​ Condition : Set the execution conditions of the current job.
○​ For example, the execution condition of JOB-b is that JOB-A execution

is equal to true.

○​ For example, the execution condition of JOB-C is that JOB-A execution
is equal to false.

○​ The connection between the jobs will show T or this F Flag.

Flow Configure

1.​ Scheduler mode
○​ TimeScheduler : Scheduled periodically according to time, similar to

Crontab.
○​ RESTScheduler : Can it be called through the REST interface.
○​ TriggerScheduler : Triggered by the event to execute this workflow

■​ FlinkTrigger：Choose a parpgraph written in %flink, In this
paragraph, Flink receives external data. When this paragraph
receives the data, Will trigger FlinkTrigger to make workflow
execute.

○​ Other modes ...
2.​ Flow Parameters（Optional）
3.​ Allows users to override flow parameters. The flow parameters override the

global properties for a job, but not the properties of the job itself.
○​ Workflow can run multiple instances at the same time. Each instance

has a completely separate environment variable. Workflow execution
environment variable release.

○​ Environment variables can be used as run parameters and return
values for each paragraph throughout the workflow lifecycle.

○​ The format is: %{var_name}=value, When executing the workflow, The
%{var_name} in your code for all paragraphs will be replaced by the
value. Execute this paragraph.

4.​ Failure Options
○​ Hang：If this workflow fails to execute, Then set the status to Hang, No

longer executed. Re-received only if it is manually set to Ready.
○​ Cancel All：will immediately kill all running jobs and set the state of the

executing flow to FAILED.
○​ Finish All Possible： will keep executing jobs in the flow as long as its

dependencies are met. The flow will be put in the FAILED FINISHING
state and be set to FAILED once everything completes.

5.​ Concurrent Options
6.​ If the flow execution is invoked while the flow is concurrently executing,

several options can be set.
○​ Skip Execution : will not run the flow if its already running.
○​ Run Concurrently : will run the flow regardless of if its running.

Executions are given different working directories.
○​ Pipeline : runs the the flow in a manner that the new execution will not

overrun the concurrent execution.
7.​ Notification
8.​ The notification options allow users to change the flow’s success or failure

notification behavior.
○​ Notify on Failure

■​ First Failure - Send failure emails after the first failure is
detected.

■​ Flow Finished - If the flow has a job that has failed, it will send
failure emails after all jobs in the flow have finished.

○​ Email address
○​ will use the default notification emails set in the final job in the flow. If

overridden, a user can change the email addresses where failure or
success emails are sent. The list can be delimited by commas,
whitespace or a semi-colon.

Flow Executions

1.​ Toolbar
○​ Cancel - kills all running jobs and fails the flow immediately. The flow

state will be KILLED.
○​ Pause - prevents new jobs from running. Currently running jobs

proceed as usual.
○​ Resume - resume a paused execution.

2.​ Job List

Display all execution records of this workflow in a list

JOB

Job Dependencies

Jobs can have dependencies on each other. You can use depends section to list all
the parent jobs. In the below example, after jobA and jobB run successfully, jobC will
start to run.

nodes:​
 - name: jobC​
 note: nid1(note-title)​
 paragraph: pid1(p1-title), pid2(p2-title)​
 retry: 3 # Default configurable​
 depends:​
 - jobA​
 - jobB​
 condition: ${JobA:param1} == 1 && ${JobB:param2} == 2​
​
 - name: jobA​
 note: nid2​
 paragraph: pid1, pid2​
​
 - name: jobB​
 note: n3​
 paragraph: pid1, pid2

​
When paragraph is not set, it means that all paragraphs in the entire note are
executed. paragraph can be set to one or more, separated by commas.

Condition
Conditional workflow feature allows users to specify whether to run certain jobs
based on conditions.

Users can run or disable jobs based on runtime parameters like the output from
previous jobs. submarine provides users with some predefined macros to specify the
condition based on previous jobs’ status. With those conditions, users can obtain
more flexibility in deciding the job execution logic. For example, if the parent job runs
successfully, the child jobA is run. if the parent job fails, Then the child jobB is run.
They can implement branching logic in their workflow.

How to define a condition?

A valid condition is a combination of multiple conditions on job runtime parameters
and one condition on job status macro. Comparison and logical operators can be
used to connect individual condition components.

Supported operators are: ==, !=, >, >=, <, <=, &&, ||, !

Condition on job runtime parameter

Variable substitution ${jobName:param} can be used to define the condition on job
runtime parameter. : is used to separate the jobName and the parameter. The
runtime parameter can be compared with a string or a number in the condition.

Condition on job status macro

This condition will be evaluated on all the parent jobs, i.e. the depends section in
YAML file.

Currently supported macros:

●​ all_success (default)
●​ all_done
●​ all_failed
●​ one_success (at least one parent job succeeded)
●​ one_failed (at least one parent job failed)

Corresponding job status for each macro:

●​ all_done: FAILED, KILLED, SUCCEEDED, SKIPPED, FAILED_SUCCEEDED,
CANCELLED

●​ all_success / one_success: SUCCEEDED, SKIPPED, FAILED_SUCCEEDED
●​ all_failed / one_failed: FAILED, KILLED, CANCELLED

Users are not allowed to combine multiple condition on job status macros in one
single condition because they might have conflict with each other.

Flow scheduler
Support for starting workflows through Ajax APIs, timers, and triggers. Once all
events are ready, the workflow will be triggered.

TimeScheduler

Triggering the execution of a workflow through a periodic timer, Just like corntab.

RestScheduler

Only when the REST call is accepted can it be called by the external system through
the REST interface.

TriggerScheduler

Event trigger, This concept enables users to define the events on which the stream
depends. Once the user-specified event is ready, the workflow will be triggered.

FlinkTrigger

Write a paragraph using %flink in the note, When this paragraph is executed by flink
receiving stream data, The execution of the workflow will be triggered.​
This is commonly used to perform, hadoop ETL, machine learning algorithm online
detection service, machine learning algorithm model incremental update and other
usage scenarios

Development Plan

Development method

Development language
I recommend using JAVA 8, because scala is not familiar to everyone, so you can maintain
and extend the workflow function.

Develops Git repositories
https://github.com/apache/submarine.git

Clone Git repositories

git clone https://github.com/apache/submarine.git

Create develops branch for feature

git chckout -b JIRA-NUM
codeing …
test …
git commit …

Pull request in Github
If you find code conflicts, execute the following statement and resolve the conflict.

git fetch upstream/master
git rebase upstream/master

Development Module

Flow graph module (submarine-4075)
The flow graph view is where the user operates a lot. So you need a very good user
experience.
description: Flow Graph

Example
1.​ https://mermaidjs.github.io/
2.​ https://modeling-languages.com/javascript-drawing-libraries-diagrams/
3.​ https://www.codeproject.com/Articles/709340/Implementing-a-Flowchart-with-SVG-an

d-AngularJS
4.​ https://github.com/ashleydavis/AngularJS-FlowChart
5.​ https://github.com/bennyrowland/ng-flow-chart
6.​ https://www.basicprimitives.com/index.php?option=com_content&view=article&id=71

&Itemid=116&lang=en
7.​ https://flowchart.js.org/

These flow library, Have implemented some of the features we need, We need to master the
implementation of these library, Transformed into the features we need.

https://issues.apache.org/jira/browse/ZEPPELIN-4075
https://mermaidjs.github.io/
https://modeling-languages.com/javascript-drawing-libraries-diagrams/
https://www.codeproject.com/Articles/709340/Implementing-a-Flowchart-with-SVG-and-AngularJS
https://www.codeproject.com/Articles/709340/Implementing-a-Flowchart-with-SVG-and-AngularJS
https://github.com/ashleydavis/AngularJS-FlowChart
https://github.com/bennyrowland/ng-flow-chart
https://www.basicprimitives.com/index.php?option=com_content&view=article&id=71&Itemid=116&lang=en
https://www.basicprimitives.com/index.php?option=com_content&view=article&id=71&Itemid=116&lang=en
https://flowchart.js.org/

TODO list
1.​ Workflow YAML file

We can first test the file with a workflow Yaml file, Perform functional
development and testing.

2.​ The Job block needs to support connections through unidirectional line
segments.
We need to search from the network, is there a closer to the angularJS library
we need?

3.​ The Job block needs to support multiple colors, indicating different states of
the JOB.

4.​ The job block needs to support the progress bar display, indicating the
progress of the JOB execution.

5.​ In the blank of the graph view, click the right mouse button and a pop-up
menu is required. The menu items are as follows:

MENU LIST

Add Job

Run workflow

Cancel workflow

6.​ Select a job block and click the right mouse button. A pop-up menu is

required. The menu items are as follows:

MENU LIST

Delete Job

Start Job

Start Job & Child

Stop Job

7.​ Select a job block and the property items in the job property view need to

correctly display the information that has been set.
8.​ The property item in the job property view The note drop-down box selects the

note, and the paragraph drop-down box displays the list of paragraphs in the
note.

Flow Engine
The flow engine is where the various tasks are executed in the workflow.
description: Flow Configure

TimeScheuder Module (submarine-4076)
Please add some simple design document in here …

RESTScheduler Module(submarine-XXXX)
Please add some simple design document in here …

TriggerScheduler Module(submarine-XXXX)
Please add some simple design document in here …

Other design modules are being supplemented.

https://issues.apache.org/jira/browse/ZEPPELIN-4076

	Submarine workflow
	Typical use case
	Flow view
	Flow Graph
	Flow Configure
	Flow Executions

	JOB
	
	Condition
	How to define a condition?
	Condition on job runtime parameter
	Condition on job status macro

	Flow scheduler
	TimeScheduler
	RestScheduler
	TriggerScheduler
	FlinkTrigger

	Development Plan
	Development method
	Development language
	Develops Git repositories
	Clone Git repositories
	Create develops branch for feature
	Pull request in Github

	Development Module
	Flow graph module (submarine-4075)
	Example
	TODO list

	Flow Engine
	TimeScheuder Module (submarine-4076)
	RESTScheduler Module(submarine-XXXX)
	TriggerScheduler Module(submarine-XXXX)

