EOS Scalability Design

The purpose of this doc is to give a walkthrough of internal changes introduced in KIP-447. It is
highly recommended to read through the exactly once design doc before proceeding to read this
document.

What we currently have

In KIP-98, a term called transactional.id was defined on transactional producer to guarantee
exactly once throughout its multiple lifecycles. During initialization/restart, the producer will send
an InitPidRequest to transaction coordinator hosted on one of the brokers to abort/committed
any ongoing transactions it has started but not finished. Each reinitialization will bump producer
epoch so that duplicate or zombie producers configured with same transactional.id could be
fenced. To gain access to the transaction state, coordinator discovery process always routes the
same transactional producer’s initialization request to the same coordinator based on this
assumed unique transactional.id.

On the stream side, we define the transactional.id based on the resource assigned to the
producer, and producer’s life cycle ends on every rebalance. Each producer will be in charge of
dealing with exactly one task (or exactly one topic partition as input). In the rebalance, when the
task assignments get shuffled, stream thread will close task producer from last generation and
bounce up new producers in an one-to-one mapping with assigned tasks. The task id will be
used as transactional.id for task producer initialization and could be guaranteed unique based
on input topic partitions, as the assignment was inherited from consumer group protocol.
Obviously this is not a well scaled solution and number of producers grow linearly with number
of tasks. Too many producers come with separate memory buffers, separate threads, separate
network connections which is a waste of hardware resources, and couldn’t benefit from
producer batching anymore.

Our goal is to allow each stream thread only initializes one thread producer and batch all the
transaction states for assigned tasks together. However, this proposal will break the
correctness. The problem was that transaction coordinator could no longer be leveraged for
fencing since the producer state could change within one life cycle.

What we are proposing

It's hard to make transaction coordinator understand the group assignment semantic, because it
assumes each transactional producer as individual clients. It's also not favorable to add group
assignment state to transactional coordinator neither, as group coordinator already maintains


https://docs.google.com/document/d/11Jqy_GjUGtdXJK94XGsEIK7CP1SnQGdp2eF0wSw9ra8/edit
https://cwiki.apache.org/confluence/display/KAFKA/KIP-98+-+Exactly+Once+Delivery+and+Transactional+Messaging

that state. Having two copies of the same state data could easily go out of sync and cause
bugs. The new proposal is to solve fencing problem on group coordinator side. Let's first take a
look at a sample exactly-once use case, which is quoted from KIP-98:

public class KafkaTransactionsExample {

public static void main(String argsl[]) {
KafkaConsumer<String, String> consumer = new

KafkaConsumer<> (consumerConfiqg) ;

KafkaProducer<String, String> producer new
KafkaProducer<> (producerConfiqg) ;

producer.initTransactions () ;

while (true) {
ConsumerRecords<String, String> records =
consumer.poll (CONSUMER POLL TIMEOUT) ;
if (!'records.isEmpty()) {

producer.beginTransaction () ;

List<ProducerRecord<String, String>> outputRecords =
processRecords (records) ;
for (ProducerRecord<String, String> outputRecord : outputRecords) {

producer.send (outputRecord) ;

sendOffsetsResult =

producer.sendOffsetsToTransaction (getUncommittedOffsets ());

producer.commitTransactions () ;

The first thing when a producer starts up is to register its identity through initTransactions API.
Transaction coordinator leverages this step in order to fence producers using the same
transactional.id and to ensure that previous transactions must complete. In the above template,



we call consumer.poll ()to get data, and internally for the very first time we start doing so,
consumer needs to know the input topic offset. This is done by a FetchOffset call to the group
coordinator. With transactional processing, there could be offsets that are "pending”, I.E they are
part of ongoing transactions. Upon receiving FetchOffset request, broker will export offset
position to the "latest stable offset” (LSO), which is the largest offset that has already been
committed when consumer isolation.level is ‘read_committed’. Since we rely on unique
transactional.id to revoke stale transaction, we believe any pending transaction will be aborted
as producer calls initTransaction again. In Kafka Streams, we will also explicitly close producer
to send out a EndTransaction request to make sure we start from clean state.

P1

committed

pending |

', Return iso
Y immediately
".

Client A Client B

Generation: 1 Generation: 2

This approach is no longer safe when we allow topic partitions to move around transactional
producers, since transactional coordinator doesn't know about partition assignment and
producer won't call initTransaction again during its life cycle. Omitting pending offsets and
proceed could introduce duplicate processing. The proposed solution is to reject FetchOffset
request by sending out a new exception called PendingTransactionException to new
client when there is pending transactional offset commits, so that old transaction will eventually
expire due to transaction timeout. After expiration, transaction coordinator will take care of
writing abort transaction markers and bump the producer epoch. For old consumers, we will
choose to send a COORDINATOR_LOAD_IN_PROGRESS exception to let it retry, too. When
client receives PendingTransactionException oOr
COORDINATOR_LOAD_IN_PROGRESS, it will back-off and retry getting input offset until all
the pending transaction offsets are cleared. This is a trade-off between availability and



correctness. The worst case for availability loss is just waiting for transaction timeout when the
last generation producer wasn’t shut down gracefully, which should be rare.

Below is the new approach we discussed:
P1

committed

—— LS50
pending

Ci

back-off

Offset
fetch

Client A Client B

Generation: 1 Generation: 2

Note that the current default transaction.timeout is set to one minute, which is too long for Kafka
Streams EOS use cases. Considering the default commit interval was set to only 100
milliseconds, we would doom to hit session timeout first if we don't actively commit offsets
during that tight window. So we suggest to shrink the transaction timeout to be the same default
value as session timeout (10 seconds), to reduce the potential performance loss for offset fetch
delay when some instances accidentally crash.

This KIP change only takes effect in Kafka Streams EOS and customized EOS use cases
following the recommended template below. Major differences from KIP-98 template are
highlighted:

KafkaConsumer consumer = new KafkaConsumer<> (consumerConfigqg) ;

KafkaProducer producer = new KafkaProducer()

producer.initTransactions () ;
while (true) {

// Read some records from the consumer and collect the offsets to commit



ConsumerRecords consumed = consumer.poll (Duration.ofMillis (5000)); //
This will be the fencing point if there are pending offsets for the first
time.

Map<TopicPartition, OffsetAndMetadata> consumedOffsets =

offsets (consumed) ;

// Do some processing and build the records we want to produce

List<ProducerRecord> processed = process (consumed) ;

// Write the records and commit offsets under a single transaction
producer.beginTransaction () ;
for (ProducerRecord record : processed)

producer.send (record) ;

producer.sendOffsetsToTransaction (consumedOffsets,

consumer .groupMetadata()) ;

producer.commitTransaction () ;

Some key observations are:
1. User must be utilizing both consumer and producer as a complete EOS application,
2. User needs to store transactional offsets inside Kafka group coordinator, not in any other
external system for the sake of fencing,
3. Producer needs to call sendOffsetsToTransaction(offsets, groupMetadata) to be able to
fence properly,
Next we will walkthrough what will happen during each step of the code template above.

producer.initTransactions () ;

Nothing new will be done here, the initialization process shall be the same.

ConsumerRecords consumed = consumer.poll (Duration.ofMillis (5000))
Map<TopicPartition, OffsetAndMetadata> consumedOffsets =
offsets (consumed) ;

Consumer polls in a batch of data to continue processing.



Blocking on fetching offsets

As we have discussed above, the blocking point for last generation transaction is the pending
consumer offsets, or LSO. On every rebalance end, consumer will do a full offset fetch call to
group coordinator and potentially be asked to back off until zombie transactions get aborted
through timeout.

A new error code PendingTransactionException shall be sent back to the client and consumer will
keep attempting to get offsets until the transaction timeout in the worst case that someone
hasn’t closed its state properly on last generation. After the offset fetch is successful, the
program proceeds.

List<ProducerRecord> processed = process (consumed) ;

Application exercises business logic on the consumed data.

producer.beginTransaction () ;
for (ProducerRecord record : processed)
producer.send(record) ;

Producer changes its own state to ongoing transaction, and sends data to corresponding
brokers. If this is the first time it writes data to a topic partition, an AddPartitionsTxnRequest
shall be sent to the transaction coordinator for it to memorize the touched topic partitions within
current ongoing transaction.

producer.sendOffsetsToTransaction (consumedOffsets,
consumer.groupMetadata()) ;

Client will attempt to send AddOffsetsToTxnRequest during sendOffsetsToTransaction call
if this is the first time it tries to commit txn offset to a specific topic partition.

After the call to transaction coordinator succeed, client will do transaction offset commit to the
group coordinator. Producer will be appending the generation.id into the request so that group
coordinator could fence zombie request.

TxnOffsetCommitRequest => Transactionalld GrouplId ProducerId ProducerEpoch

Offsets GenerationId

TransactionalId => String

GroupId => String

ProducerId => into64

ProducerEpoch => intl6

Offsets => Map<TopicPartition, CommittedOffset>
GenerationId => int32 // NEW

MemberId => String // NEW

GroupInstanceId => String // NEW



Producer will get fenced if both conditions are satisfied:
1. It has a non-negative generation.id field. Otherwise this suggests a standalone producer
who doesn’t utilize consumer state.
2. Provided generation.id doesn’t equal to the current consumer group generation.
A ProducerFencedException shall be returned and the new producer client will crash
immediately because it was assumed as a zombie.

We also opt to throw exception when the new producer calls
sendOffsetsToTransaction (offsets, consumerGroupId)to ensure API consistency.

producer.commitTransaction () ;

Producer will try to commit the ongoing transaction by writing an EndTxnRequest to the
transaction coordinator. The coordinator will write a prepare_commit marker to its transactional
log and broadcast WriteTxnMarkersRequest to all the affected parties such as input/output
topics, offset topics, etc.

Stream Upgrade Path

It's extremely hard to preserve two types of stream clients within the same application due to the
difficulty of state machine reasoning and fencing. It would be the same ideology for the design of
upgrade path: one should never allow task producer and thread producer under the same
application group.

Following the above principle, Kafka Streams uses version probing to solve the upgrade
problem. Step by step guides are:

1. Broker must be upgraded to 2.5 first. This means the “inter.broker.protocol.version™ (IBP)
has to be set to the latest. Any produce request with higher version will automatically get
fenced because of no support.

2. Upgrade the stream application binary and choose to set UPGRADE FROM CONFIG
config to 2.3 or lower. Do the first rolling bounce, and make sure the group is stable.

3. Just remove/unset version config in order to make application point to actual Kafka client
version 2.5. Do second rolling bounce and now the application officially starts using new
thread producer for EOS.

The reason for doing two rolling bounces is because the old transactional producer doesn’t have
access to consumer generation, so group coordinator doesn’t have an effective way to fence old
zombies. By doing first rolling bounce, the task producer will also opt in accessing the consumer
state and send TxnOffsetCommitRequest with generation. With this foundational change, it is
much safer to execute step 3.


https://cwiki.apache.org/confluence/display/KAFKA/KIP-268%3A+Simplify+Kafka+Streams+Rebalance+Metadata+Upgrade

Alternative Discussions

Generic Consumer APl Support

Currently we pass in Consumer<K, V> interface into KafkaStreams, instead of the full
implementation type KafkaConsumer<K, V>. With the new initTransaction APl we have to cast
the generic Consumer type to KafkaConsumer, meaning any implementation on top of
Consumer will be automatically failing. Whether to continue supporting generic consumer is a
qguestion we need to address during the design phase.

To make the generic consumer capable of doing transactional commit fencing, we estimate at
least several public APIs should be added:

e int generationld();
o Getinternal generation.id access
e map<TopicPartition, PartitionData> fetchOffsets(boolean allPartitions);
o A fetchOffset call to block on pending transaction offsets
e void blockOnRebalance(long timeout);
o Let the member join and block until reaching rebalance
Besides public APIs, the consumer implementation must be able to handle exceptions like
CoordinatorNotAvailable and PendingTransactions.



	EOS Scalability Design 
	What we currently have 
	What we are proposing 
	Blocking on fetching offsets 

	Stream Upgrade Path 
	Alternative Discussions 
	Generic Consumer API Support 


