

Polkit support in KIO

Name: Chinmoy Ranjan Pradhan
Email: chinmoyrp65.gsoc@gmail.com
IRC Nick: chinmoy

INTRODUCTION
KIO framework is used by KDE applications to provide file management abilities. This
framework provides almost all file management functions that one will ever need.

However it doesn’t provide any support for file management as a privileged user. So whenever
there is a need to perform file management tasks with escalated privileges the application
simply shows an error. A casual user may not see it as a problem but for power users,
sys-admins, developers this is a huge impedance. Many users get around this by starting the
whole application as root. Running Qt/KDE GUI applications as root is not only sub par but also
a very dangerous solution. Dangerous because if not handled properly it can cause irreversible
damage to the system. To address this issue some KDE applications are disabling being
executed as root. For example, the next versions of Dolphin and Kate will show an error
message and exit when started with root privileges.

The optimal solution to this problem is to perform only one specific action as root instead of
giving root privileges to the whole application. Just here Polkit comes to rescue. Polkit is the
standard framework used by Linux desktops to grant privileged actions to unprivileged
processes.

The goal of this project is to add Polkit support in KIO. After this addition applications will be
able to perform privileged actions after authentication. The post authentication behaviour will be
similar to sudo command. This means for sometime the user can perform privileged tasks
without having to enter the password repeatedly. However to prevent any accidental damage to
the system a warning dialog will be shown prior to performing the task.

DELIVERABLES

1.​ Polkit support to the following file operations
●​ Delete
●​ Copy/Cut
●​ Trash
●​ Rename
●​ Creating Symlinks
●​ Creating New Files/Folders
●​ Changing Ownership and Permissions

2.​ Integration in dolphin

●​ Relaxing assumptions in write protected locations.
●​ Emphasising context menu actions and other gui elements of dolphin when

location is write protected.
●​ Showing necessary warning before executing an action with privilege.
●​ Documentation.

IMPLEMENTATION
I will bring about the aforementioned changes to KIO in following steps:

1.​ Adding necessary warnings
2.​ Adding KAuth Helper
3.​ Refactoring File Ioslave
4.​ Testing

WARNING DIALOG
A warning is displayed when an application tries to perform a privileged action during the
persistence period. It is needed to prevent the application from doing any accidental damage to
the system. The warning dialog is basically a KMessageBox and is shown as soon as
insufficient privileges are detected. The warning will contain a message describing the cause of
warning and the item(s) for which the warning is being shown.

❏​ A simple warning

The warning can either be shown from ioslave or from application through jobuidelegate.
Showing it from ioslave provides us with greater control over the contents of warning but we
may end up showing similar warning twice. Meanwhile showing warning from the application
gives us control over the number of times the warning is to be displayed but on the flip side we
will have to check for permissions for every item which in some cases can be time consuming.
As we see both the cases have their pros and cons. I will decide upon one of them during the
initial period of gsoc.

KAUTH HELPER
KAuth helper is the utility that does the actual work. It first ask the user for his credentials. And
after successful authentication it performs the desired action with escalated privilege.

❏​ KAuth authentication dialog (KDE neon)

All the file management functions that require privileged environment will be placed in this utility.
The kauth actions in the helper utility won’t perform the actual file operation. They will only act
as meta actions. The purpose of these actions will be to select a suitable (sub)action based on
the arguments provided by the ioslave in order to perform the required file operation. The
various meta actions, their set of sub actions and the function call each of them will make as a
privileged user are listed below.

●​ Delete Operation
Action ​​ - ​ del
Sub-Actions ​ - delete_file ​ [unlink]

​ ​ ​ ​ delete_dir​ [QDir::rmdir]

●​ Rename Operation
Action ​​ - ​ rename
Sub-Action​ - ​ rename​ [rename]​

●​ Copy/Cut/Trash Operation

Action​ ​ -​ copy
Sub-Actions​ - ​ open_file​ [QFile::open]
​ ​ ​ read_file​ [read]
​ ​ ​ write_file​ [write]
​ ​ ​ send_file​ [sendfile]
 ​ ​ ​ close_file​ [QFile::close]

●​ Creating Files/Folders/Links

Action​ ​ -​ create
Sub-Actions​ -​ put_file​​ [put]

create_link​ [symlink]​
​ ​ ​ create_dir​ [mkdir]
​ ​ ​

●​ Changing Ownership and Permissions
Action​ ​ - ​ change
Sub-Actions​ -​ change_own​ [chown]
​ ​ ​ change_perm​ [chmod]

REFACTORING FILE IOSLAVE
File ioslave performs all the file management task. At the moment file ioslave doesn't support
performing action as a privileged user. It simply returns an error message when there is
insufficient privilege.

To solve this issue I will start by replacing error messages which are displayed when insufficient
privilege is detected by a call to method named execWithRoot.
This call will be made with the name of meta action, the name of sub action or actual file
operation that requires privilege and the path of items upon which the action is to be performed
as parameters.
The work of execWithRoot is then to prepare a QVariantMap containing the necessary data and
call the kauth helper which will perform the desired file operation with escalated privileges.

I have also planned to introduce warning dialog in this part of code but there’s also the
possibility of the warning being shown from the application’s side. It all depends on the relative
advantages and disadvantages of both the approaches.
I have a PoC patch which makes use of the former approach.The warning is shown from the
ioslave. This patch can be found here [3].

File ioslave has different methods responsible for different file management. I will add polkit
support to one method at a time. Then to check if everything works correctly I will add unit test

https://git.reviewboard.kde.org/r/129983/

for the corresponding operation. I have listed below the order in which I will add polkit support to
the various file management operations.

●​ Delete Operation
In linux the methods FileProtocol::del and FileProtocol::deleteRecursive combined are
responsible for deleting files and directories. The former method deletes one file or one empty
directory at a time. Whereas the latter is called when directory is not empty. It then deletes all
the items recursively. Currently when deletion of file/directory requires privilege this method
shows an error and terminates the whole delete operation.
So to overcome this l will add the usual call to execWithRoot which will take care of kauth
related stuffs i.e. getting the action, preparing metadata, executing KAuth::Action and if
necessary show a warning. The kauth action del will be used for doing a privileged delete.

Now it's the delete function where if we choose to show warning from ioslave we might end up
showing a similar warning twice which is very unpleasant. And if we choose to show warning
from jobuidelegate we might slow down the whole delete operation.

●​ Rename Operation
It is performed by FileProtocol::rename. It is just a matter of few lines of changes before it can
do privileged renaming. The helper action rename will be called for this task.

●​ Copy, Cut and Trash Operation
These operations are performed by FileProtocol::copy because all are just special cases of
copy. Performing any one of them with escalated privileges requires them to call the copy kauth
action.
This action will in turn determine the sub-action (file operation) to be performed, that is to say,
file_open, file_read, file_write, file_close or send_file.
As to showing warning dialog choosing between ioslave and jobuidelegate doesn’t really matter.
Both the approach will show the warning once and won’t slow down the operation.

●​ Creating Files, Folders and Links
FileProtocol::put along with FileProtocol::copy are used by KNewFileMenu to create new files.
FileProtocol::mkdir is used to create a folder. To create symlinks ioslave uses the
FileProtocol::symlink method.
Adding polkit support to these actions should be easy as there’s only one place in these
methods where execWithRoot needs to be placed. Additionally there will be some changes to
KPropertiesDialog because it is responsible for creating new desktop (.desktop) files.
The kauth action create will be responsible for performing these operations as privileged user.

●​ Changing Ownership and Permissions
FileProtocol::chown and FileProtocol::chmod are used for changing ownership and permission
respectively. They will make use of the kauth action change to change file permissions and
ownership with elevated privilege.

TESTING
I will be adding unittest as soon as I finish adding polkit support to an operation just to see if
everything is functioning correctly. This will make sure that base is solid and bug free. This way
there will be no issues while integrating the patched KIO in dolphin.

To manually test the changes I will make use of kioslavetest which is in KIO’s test suite. I have
also prepared a small app specifically for this purpose. It’s a menu driven app which tries to
mimic the file management menu of dolphin. This can be found here [4].

EXPECTED RESULT
At the end of this project I aim for the following results.

❏​ Context menu inside a write-protected folder

❏​ Create New menu inside a protected folder

❏​ Authentication for opening a read-protected folder

❏​ Warning dialog (post-authentication)

POSSIBLE ISSUES
There are couple of issues that may arise during the course of implementation. So I have listed
them beforehand.

-​ As I have mentioned above the warning dialog can be either shown from ioslave or from
jobuidelegate. With former method the issue is we might end up with multiple warnings
while if we go for latter one we may end up slowing down the whole operation. Of the
given options the choice will be made as soon as the program starts. I will also explore
other possibilities.

-​ One of the behavioural changes we want is that once the privilege is escalated for one

file operation it should be escalated for other file operations as well. This requires
authentication of kauth actions in background. Now polkit has imply annotation which
can be used for this purpose. However there is no support for annotations in the KAuth
library. So there is possibility of some additions to KAuth library.

-​ Successful integration in dolphin requires emphasising the context menu actions and

some of the gui elements of dolphin so as to indicate that the location is write protected
but privilege escalation is available. One thing we can do is overlay a lock icon over the

https://github.com/crp999/polkitintegrationtest

existing ones. This way user will know that privilege is required to perform the action.
However implementing this idea is somewhat difficult with existing kde frameworks. I will
discuss about this with the community soon after finishing the work on KIO. If a better
way is found I will consider that instead.

TENTATIVE TIMELINE

Community Bonding Period
During this time I will carry out the following tasks:

●​ List out all the parts of KIO this project might touch.
●​ Decide from where should we show the warning dialog, ioslave or jobuidelegate.
●​ Decide the data and message the warning dialog will display
●​ Research on polkit’s imply annotation.
●​ Find a way to nicely integrate the patched KIO in dolphin.

May

Week 4:
○​ Start coding the warning dialog.

June

Week 1:
○​ Start working on kauth helper.
○​ Work on del, rename and change action.

Week 2:

○​ Work on copy and create action. Both are very important actions.
○​ Add error handling code.
○​ Comment the new code for future reference.

Week 3:

○​ Start working on the file ioslave
○​ Add polkit support to delete operation.
○​ Add polkit support to rename operation.

Week 4:
○​ Add polkit support to copy/cut/trash operation.
○​ Add polkit support to file/folder creation operation.

July

Week 1:
○​ Add polkit support to changing permission and ownership operation.
○​ Add unit tests.

Week 2:
○​ Connect everything i.e. ioslave, helper and warning dialog.
○​ Manually test all the changes made KIO.
○​ Discuss with kde users the possible ways to integrate our patched KIO in dolphin.

Week 3:
○​ Relax the assumptions of dolphin in root owned location.
○​ Start working on the agreed method of integration.

Week 4:

○​ Continue working on integration.
○​ Comment the new code for future reference.
○​ Add necessary test cases.
○​ Add documentation.

August ​

Week 1:
○​ If integration work is not over then finish it in this week.

Week 2:

○​ Manually test the integration.
○​ Make sure our changes to KIO doesn’t break other client apps like gwenview,

kate, etc.
○​ Get feedback from users and make necessary changes.

Week 3:

○​ Buffer time for finishing incomplete parts (if any).

 OTHER OBLIGATIONS
I will be completely free from first week of june to last week of july so I can easily give 40+
hrs/week to the project. My college will start from the first week of august. During this time I can
only give around 30 hrs/week to the project. However I will work couple of hours extra during
rest of the work period to compensate for this time. Except this I don’t have any other
commitments.

ABOUT ME
I am a 1st year Computer Science student at Dr. Ambedkar Institute of Technology, Bangalore,
India. I have been a KDE user for a year and a contributor for about 8 months. I am comfortable
with C/C++ and I have working knowledge of bash script and python. I’ve submitted number of
patches which can be found here [1][2]. My contributions are predominantly to KIO so I am very
much comfortable with its code base. I have also prepared a PoC patch[3] which adds polkit
support to the delete operation. This further strengthened my understanding of the parts of KIO

https://git.reviewboard.kde.org/users/chinmoyr/
https://phabricator.kde.org/diffusion/commit/?authors=chinmoyr
https://git.reviewboard.kde.org/r/129983/

this project involves.​

LINKS USED
[1] : https://git.reviewboard.kde.org/users/chinmoyr/ [My submissions]
[2] : https://phabricator.kde.org/diffusion/commit/?authors=chinmoyr [My submissions]
[3] : https://git.reviewboard.kde.org/r/129983/ [PoC Patch]
[4] : https://github.com/crp999/polkitintegrationtest [For Manual Testing]

https://git.reviewboard.kde.org/users/chinmoyr/
https://phabricator.kde.org/diffusion/commit/?authors=chinmoyr
https://git.reviewboard.kde.org/r/129983/
https://github.com/crp999/polkitintegrationtest

