
Airbnb Price Prediction Using Machine Learning Models 

Contents  
1 Introduction 1  

2 Methodology 1 2.1 Data Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2.2 
Exploratory Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.3 Regression Analysis . 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  

3 Results and Discussions 10 3.1 LASSO Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
. . 10 3.2 Random Forest Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.3 Support 
Vector Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.4 Dataframe B . . . . . . . . . . . . . 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  

4 Conclusion 11 References 12 Appendix 12  

1 Introduction  
Determining the optimal price for renting out a space on Airbnb poses a considerable challenge. To 
address this challenge, the data is extracted from Airbnb listings in three major European cities; Athens, 
Bologna, and Copenhagen. Initially the data has 5867 observations and 49 variables.  

2 Methodology  
This section is divided into 3 major sub sections including information about the ‘Data Preparation’, ‘Ex 
ploratory Data Analysis’ and ‘Regression Modelling’.  

2.1 Data Preparation  
Glancing over the summary of the data, there is a lot of scope of enhancing the data to prepare for it for 
the regression analysis. The tasks undertaken to address the issues involves dropping variables that are 
not required, reducing the NA values, removing special characters, removing outliers and creating dummy 
variables.  

The columns dropped on the assumption that they dont affect the price for the listing and also there are 
only NA values. These include X, host_id, host_location, host_neighbourhood, neighbourhood, neighbour 
hood_group_cleansed, calendar_updated.  

To address the issue of NA values in ‘license’, the structure of the variable is modified to have value as 1 
if there is license information else 0.  

1 
For the variables ‘beds’ and ‘bedrooms’, the NA values are imputed in both on the basis of the 
observations that has values. This helped reduce the number of NA significantly. Similarly, the variables 
‘bathrooms’ and ‘bathrooms_text’ were handled. Post this the variables ‘bedrooms’ and ‘bathrooms_text’ 
were dropped.  

The variables with class type logical are converted to integer to have values 0 and 1 for FALSE and 
TRUE respectively.  

Only the ‘Year’ value is retained from the variables with observation in data/time format. Similarly, variable 
with special symbols like % and $ signs were removed and only the original numeric value was retained.  

## [1] 64  



## [1] 68  

## [1] 53  

## [1] 19  

Histogram of df$price  

5000  

5000  

3000  

Frequency  

3000  

1000  

1000  
0  

0  

0 1000 2000 3000 4000 5000 6000 7000  

df$price  

Histogram of df$host_listings_count  

300  

4000  

3000  

200  

Frequency  

2000  

100  

1000  

50  

0  
0  

0 50 100 150 200 250 300  

df$host_listings_count  

2 



Frequency Frequency  

Histogram of 
df$host_total_listings_count  

4000  

500  

3000  

300  

2000  

1000  

100  

0  

0  

0 100 200 300 400 500 600 

df$host_total_listings_count  

Histogram of df$minimum_nights  

1000  

5000  

800  

3000  

600  

400  

1000  



200  

0  

0  

0 200 400 600 800 1000 df$minimum_nights  

To address the issue with outliers in the variables ‘price’, ‘host_total_listings_count’,‘host_listing_count’ 
and ‘minimum_nights’, histogram and boxplots are used to eliminate the bias in the data.  

Frequency Distribution of City  



Frequency  

3000  

1000  

0  

Athens_20_Sep_2022_listings (1).csv Bologna_14_Sep_2022_listings (1).csv 

Copenhagen_24_Sep_2022_listings (1).csv City  3 

The data is then split in to 2 data frames; df_A and df_B. The data df_A is the prime focus of the report 
and involved observations from the city ‘Athens’. For the purpose of regression analysis, the character 
variables are converted to numeric.  

2.2 Exploratory Data Analysis  
In this section various plots are created to undertand the relation between the variables.  

2.2.1 Correlation Plot  

While the correlation plot explores the correlation between the entire dataframe, the table provides the 
information of correlation between price and other variables. The accomodates and bathrooms have the 
higher postive correlation with the target variable price.  

2.2.2 Price and Accommodates  

Relationship between Accommodates and Price 1500  

1000  

Price  
500  

0  
4 8 12 16  
Accommodates  



The graph above is a scatter plot representing positive linear relation between price and accommodates. 4 

2.2.3 Price and Bathrooms  

Relationship between Bathrooms and Price  
1500  

1000  

Price  
500  

0  

0.0 2.5 5.0 7.5  
Bathrooms  

The scatterplot visualises the positive linear relationship between Bathrooms and Price.  

2.2.4 Price and Total Listings  

Relationship between Host Total Listings and 
Price 1500  

1000  



Price  
500  

0  
0 50 100  

Host Total Listings  

5 
Similar to accommodates and bathrooms, the host_total_listings has positive linear relation with the price 
however it is not very significant.  

2.2.5 Price and Number of Reviews  

Relationship between Number of Reviews and 
Price 1500  

1000  

Price  
500  

0  

0 200 400 600 800 Number of Reviews  

2.2.6 Price and Host_is_Superhost  

Relationship between Host Is Superhost and Price  

Mean Price  
75  

50  

25  

0  
−0.5 0.0 0.5 1.0 1.5 Host Is 
Superhost  



6 

1.00 0.75 0.50 0.25 0.00  

2.3 Regression Analysis  
2.3.1 Pre-Processing  

As the foremost step in predictive analytics, the data set is split in to training and test data sets using 
70:30 split ratio.  

10 Fold cross validation function is created and stored in object ‘ctrlspecs’ to train the regression mod 
els.Training models using k-fold cross-validation is beneficial because it allows for a more reliable 
evaluation of the model’s performance by reducing the impact of data variability and providing a more 
robust esti mate of its generalization ability. Additionally, it helps in utilizing the available data more 
effectively by maximizing the use of both training and testing data across multiple iterations.  

2.3.2 Regression Models  

2.3.2.1 LASSO Regression  

first_review availability_60 `room_type_Entire home/apt` `host_response_time_a few days or more` `host_response_time_within a 

few hours` review_scores_accuracy minimum_nights host_identity_verified host_has_profile_pic has_availability host_since 

host_acceptance_rate host_response_time_Unknown `host_response_time_within a day` amenities license host_response_rate 

host_listings_count number_of_reviews beds `host_response_time_within an hour` last_review host_is_superhost availability_90 

`room_type_Shared room` longitude `room_type_Private room` maximum_nights instant_bookable host_total_listings_count 

latitude availability_365 availability_30 review_scores_checkin reviews_per_month review_scores_communication 

review_scores_cleanliness `room_type_Hotel room` review_scores_value review_scores_rating review_scores_location 

accommodates bathrooms  

Feature  



0 25 50 75 100  
Importance  

## RMSE Rsquared  
## 1 72.67702 0.2624872  

The LASSO regression model is created and stored in object ‘model1’. LASSO regression was used 
because it helps in predicting the price of properties by considering various features. It is beneficial 
because it 50%matically selects the most important features and reduces the impact of less relevant 
features. This helps in creating a more accurate and efficient model for predicting property prices.  

The best lambda value is used as to minimize the mean squared error.  

2.3.2.2 Random Forest  

7 

host_has_profile_pic has_availability `room_type_Shared room` beds `host_response_time_a few days or more` license 

instant_bookable host_identity_verified `host_response_time_within a few hours` `room_type_Private room` 

`host_response_time_within an hour` host_is_superhost `room_type_Entire home/apt` `host_response_time_within a day` 

host_response_rate last_review maximum_nights first_review review_scores_communication `room_type_Hotel room` host_since 

review_scores_value host_acceptance_rate review_scores_accuracy availability_30 availability_60 availability_90 

reviews_per_month review_scores_cleanliness host_total_listings_count review_scores_checkin review_scores_rating 

minimum_nights host_listings_count amenities number_of_reviews availability_365 longitude host_response_time_Unknown 

review_scores_location latitude accommodates bathrooms  

Feature  

0 25 50 75 100  
Importance  

## RMSE Rsquare  
## 1 67.55725 0.3615867  



The Random Forest regression model is created and stored in object ‘model2’. Random Forest 
regression was used to predict the price of properties by considering various features. It is beneficial 
because it combines the predictions of multiple decision trees to make more accurate predictions. Each 
decision tree is trained on a different subset of data, and they work together to improve the overall 
prediction accuracy. This helps in capturing complex relationships between the features and the price, 
resulting in a more reliable model for predicting property prices.  

2.3.2.3 Support Vector Regression  

8 

host_has_profile_pic first_review host_response_time_a few days or more host_response_time_within a day 

host_acceptance_rate host_response_time_within an hour has_availability last_review host_response_rate 

host_response_time_within a few hours host_since minimum_nights room_type_Shared room review_scores_checkin beds 

room_type_Entire home/apt review_scores_communication instant_bookable review_scores_value license number_of_reviews 

host_response_time_Unknown review_scores_accuracy reviews_per_month availability_30 host_identity_verified availability_60 

room_type_Private room host_is_superhost maximum_nights availability_90 amenities review_scores_rating 

review_scores_cleanliness availability_365 room_type_Hotel room review_scores_location host_listings_count longitude 

host_total_listings_count latitude accommodates bathrooms  

Feature  

0 25 50 75 100  
Importance  

## RMSE Rsquare  



## 1 69.80202 0.3324607  

The Support Vector Regression model is created and stored in object ‘model3’. Support Vector 
Regression (SVR) was used to predict the price of properties based on different features. SVR is 
beneficial because it can handle both linear and non-linear relationships between the features and the 
price. It finds the best-fitting line or curve that maximizes the margin between the predicted values and the 
actual values. This helps in capturing the patterns and trends in the data, making it a powerful tool for 
predicting property prices accurately.  

2.3.3 Visualisation and Regression Analysis for df_B  

Price  
1500  

1000  

500  

0  

11.2 11.6 12.0 12.4 Longitude  

Price  

9 

1500  

1000  

500  

0  

2.5 5.0 7.5  
Accommodates  

review_scores_communication `room_type_Hotel room` review_scores_value host_is_superhost host_response_rate 

`room_type_Private room` host_acceptance_rate latitude bathrooms host_since host_has_profile_pic review_scores_rating 

first_review beds license host_total_listings_count availability_90 review_scores_checkin host_listings_count has_availability 

`host_response_time_a few days or more` number_of_reviews `room_type_Shared room` host_response_time_Unknown 

availability_30 `host_response_time_within a few hours` amenities last_review instant_bookable review_scores_accuracy 

maximum_nights `host_response_time_within a day` host_identity_verified availability_60 `host_response_time_within an hour` 

review_scores_cleanliness availability_365 review_scores_location minimum_nights reviews_per_month `room_type_Entire 

home/apt` accommodates longitude  

Feature  

0 25 50 75 100  
Importance  

## RMSE Rsquared  
## 1 224.495 0.7949659  



The exploratory data and regression analysis is done on df_B which consists data from cities Bologna 
and Copenhagen. The df_B relativey very small data frame with only 320 observations. From the 
correlation table and plot, it is evident that variable ‘longitude’ and ‘latitude’ has high positive correlation 
with price. As opposed to df_A, variables in df_B has higher degree of correlation with the target variable. 
The impact of this is observed in the R2 value of the LASSO regression model stored in object ‘model4’.  

3 Results and Discussions  
3.1 LASSO Regression  
The model is tuned using the best lambda value to minimize the mean root squared error. The deviation 
between the actual and predicted values are provided by the RMSE value of 72.67702. This suggests 
that, on average, the predicted prices by the model deviate from the actual prices by approximately 
72.67702 units.  

The Rsquared value of 0.2624872 suggests that the regression model explains approximately 26.25% of 
the variance in the property prices.The remaining 73.75% of the variance is not accounted for by the 
model and may be attributed to other factors not included in the analysis.  

The coefficients estimates for each feature indicates the strength and direction of relation with target vari 
able.Positive coefficients indicate that as the value of the corresponding feature increases, the predicted 
price also tends to increase. For example, features like “host_listings_count” and “availability_30” have 
positive coefficients, suggesting that properties with more host listings and higher availability in the next 
30 days tend to have higher prices.  

Negative coefficients indicate that as the value of the corresponding feature increases, the predicted price 
tends to decrease. For example, features like “latitude” and “number_of_reviews” have negative 
coefficients, indicating that properties located at lower latitudes and with more reviews tend to have lower 
prices.  

10 
Some coefficients are represented by dots (“.”) or zeros, which means that these features have been 
assigned a coefficient of zero and are not contributing to the prediction of property prices. This is a 
characteristic of the LASSO regression, which performs variable selection by shrinking some coefficients 
to zero.  

From the variable importance table, “bathrooms”, with a score of 100, suggests that the number of 
bathrooms in a property has the strongest influence on predicting its price followed by “accommodates” 
with a score of 47.173472, indicating that the property’s capacity to accommodate guests is an important 
factor in determining its price.  

3.2 Random Forest Regression  
The RMSE value of 67.5831 indicates that the predicted prices are deviated from the actual price value 
by 67.5 units, which is lower than that of the LASSO model. The R2 value 0.3609034, indicated that the 
proportion of variance explained by the model is 36% approximately and this better than that of the 
LASSO regression model.  

Similar to LASSO model, the variable importance shows that the variables ‘bathrooms’, ‘accommodates’ 
and ‘latitude’ has high level of impact on the price of the listings for the Random Forest regression model.  

3.3 Support Vector Regression  
The RMSE value of 69.79567 and the R2 value of 0.3327546, while it is slightly lower than that of 
Random Forest model but it is definitely better than that of LASSO regression model.  

Variable importance output is quite similar to that of the other two models.  



3.4 Dataframe B  
The RMSE value of 224.65 indicates that there is high deviation between the predicted prices and the 
actual prices. While the R2 value of approximately 79% suggest a high degree of explanation for the 
proportion of variance.  

From the coefficient estimates, a unit change in ‘longitude’ and ‘accommodates’ results in approximately 
358 and 99 units of increase respectively in the price. While a unit increase in ‘minimum nights’ results in 
approximately 23 units decrease in price.  

The output from variable importance indicates that ‘longitude’ has a major impact on predicting prices 
while ‘bathrooms’ has no impact unlike in the dataframe A. However, the ‘accommodates’ variable is still 
important in the both the data frames A and B.  

4 Conclusion  
The Random Forest regression model performed slightly better with an RMSE of 67.5831 and an 
R-squared of 0.3609034, explaining around 36% of the variance.  

Among the three models, the number of bathrooms, accommodates, and latitude were consistently 
identified as important features influencing property prices. However, other variables such as 
host_listings_count, availability_30, latitude, and number_of_reviews also had significant impacts in the 
LASSO and Random Forest models.  

Overall, these findings suggest that the Random Forest regression model outperforms the LASSO and 
Sup port Vector Regression models in predicting Airbnb property prices, providing more accurate 
predictions and explaining a higher proportion of variance. The identified influential features can help 
hosts and travelers understand the factors that drive property prices and make informed decisions.  

11 
References  

1. Gareth, J., Daniela, W., Trevor, H., & Robert, T. (2021). An introduction to statistical learning: with 
applications in R. Spinger, Second Edition. https://www.statlearning.com/  

Appendix  

setwd("C:/Users/Prayas Sachdeva/Downloads")  
library(fastDummies)  
library(caret)  
library(ggplot2)  
library(dplyr)  
library(corrplot)  
library(glmnet)  
library(randomForest)  
library(e1071)  

# Loading Data  
init_ds <- read.csv("dataset-cities- Athens_20_ - Bologna_14 - Copenhagen - student 177 .csv") df <- 
as.data.frame(init_ds)  
summary(df)  



colSums(is.na(df))  

# Data Cleaning  

## dropping columns  
df <- subset(df, select = -c(X,host_id,host_location,host_neighbourhood,neighbourhood,neighbourhood_gro## dealing 

with NA's  

### license  
df$license <- ifelse(is.na(df$license), 0, 1)  

### beds and bedrooms  
df$beds <- ifelse(!is.na(df$bedrooms), 1, df$beds)  
df$bedrooms <- ifelse(!is.na(df$beds), 1, df$bedrooms)  
df <- df %>% select(-bedrooms)  
### bathrooms and bathrooms_text  
levels(as.factor(df$bathrooms_text))  
table(df$bathrooms_text)  
df$bathrooms <- ifelse(grepl("\\d+\\.?\\d*", df$bathrooms_text), as.numeric(gsub("[ˆ0-9.]", "", df$bathdf$bathrooms <- 
ifelse(df$bathrooms_text %in% c("Half-bath", "Shared half-bath"), 1, df$bathrooms) df <- df[, -which(names(df) == 
"bathrooms_text")]  

### dropping rows with NA values  
df <- na.omit(df)  

## data manipulation  

### Converting logical variables to with T/F levels in to 1/0  
df <- df %>%  

mutate_if(is.logical, as.integer)  

12 
### Extracting 'Years' from the variables with 'YYYY-MM-DD' values  

#### Converting the variables to Date format  
df$host_since <- as.Date(df$host_since, format = "%Y-%m-%d")  
df$host_since <- format(df$host_since, "%Y")  

df$first_review <- as.Date(df$first_review, format = "%Y-%m-%d")  
df$first_review <- format(df$first_review, "%Y")  

df$last_review <- as.Date(df$last_review, format = "%Y-%m-%d")  
df$last_review <- format(df$last_review, "%Y")  

### Converting variables with more than 2 levels in to dummy variables  
####host_response_time  
table(as.factor(df$host_response_time))  
df$host_response_time[df$host_response_time == "N/A"] <- "Unknown"  

df <- dummy_cols(df, select_columns = c("host_response_time","room_type"), remove_selected_columns = TR 

####property_type  
levels(as.factor(df$property_type))  
df <- df %>% select(-property_type)  



### Removing special symbols like % and $  
#### host_response_rate  
table(as.factor(df$host_response_rate))  
df$host_response_rate <- gsub("%", "", df$host_response_rate)  
df$host_response_rate <- as.numeric(df$host_response_rate)  
df$host_response_rate[is.na(df$host_response_rate)] <- mean(df$host_response_rate, na.rm = TRUE)  

#### host_acceptance_rate  
table(as.factor(df$host_acceptance_rate))  
df$host_acceptance_rate <- gsub("%", "", df$host_acceptance_rate)  
df$host_acceptance_rate <- as.numeric(df$host_acceptance_rate)  
df$host_acceptance_rate[is.na(df$host_acceptance_rate)] <- mean(df$host_acceptance_rate, na.rm = TRUE)  

#### price  
table(as.factor(df$price))  
df$price <- gsub("\\$", "", df$price)  
df$price <- gsub(",", "", df$price)  
df$price <- as.numeric(df$price)  

#### Amenities  
df$amenities <- gsub("\\[|\\]|\"", "", df$amenities)  
df$amenities <- sapply(strsplit(df$amenities, ","), function(x) length(x))  

## Outliers  
hist(df$price)  
boxplot(df$price)  
sum(df$price > 1500)  
df <- df[df$price <= 1500,]  

hist(df$host_listings_count)  
boxplot(df$host_listings_count)  

13 
sum(df$host_listings_count > 150)  
df <- df[df$host_listings_count <= 150,]  

hist(df$host_total_listings_count)  
boxplot(df$host_total_listings_count)  
sum(df$host_total_listings_count > 150)  
df <- df[df$host_total_listings_count <= 150,]  

hist(df$minimum_nights)  
boxplot(df$minimum_nights)  
sum(df$minimum_nights > 100)  
df <- df[df$minimum_nights <= 100,]  

# Splitting the data in to two sets  
# Create the frequency table  
city_freq <- table(as.factor(df$city))  

# Plot the frequency distribution  
# Create the frequency table  
city_freq <- table(as.factor(df$city))  



# Plot the frequency distribution  
barplot(city_freq, col = rainbow(length(city_freq)), cex.names = 0.7)  

# Add labels and title  
title("Frequency Distribution of City")  
xlabel <- "City"  
ylabel <- "Frequency"  
mtext(xlabel, side = 1, line = 3)  
mtext(ylabel, side = 2, line = 3)  

df_A <- df[df$city == "Athens_20_Sep_2022_listings (1).csv", ] df_B <- 
df[df$city != "Athens_20_Sep_2022_listings (1).csv", ]  

# data pre-processing  
df_A <- df_A %>%  

select(-id, -city)  

df_B <- df_B %>%  
select(-id, -city)  

df_A <- df_A %>%  
mutate_if(is.character, as.numeric)  

df_B <- df_B %>%  
mutate_if(is.character, as.numeric)  

summary(df_B)  
# Compute correlation matrix  
cor_matrix_A <- cor(df_A)  
cor_matrix_B <- cor(df_B)  

# Plot correlation matrix  
corrplot(cor_matrix_A, method = "color", type = "full", tl.cex = 0.5, 

tl.col = "black", tl.srt = 45,  

14 
col = colorRampPalette(c("red", "green"))(100),  
addCoef.col = "white", number.cex = 0.4,  
mar = c(0, 0, 2, 0))  

corrplot(cor_matrix_B, method = "color", type = "full",  
tl.cex = 0.5, tl.col = "black", tl.srt = 45,  
col = colorRampPalette(c("red", "green"))(100),  
addCoef.col = "white", number.cex = 0.4,  
mar = c(0, 0, 2, 0))  

# Visualizations  
# Scatter plot: price vs accommodates  
ggplot(df_A, aes(x = accommodates, y = price)) +  

geom_point(size = 3, color = "steelblue", alpha = 0.6) +  
geom_smooth(method = "lm", se = FALSE, color = "darkorange", size = 1.5) +  
labs(x = "Accommodates", y = "Price", title = "Relationship between Accommodates and Price") + 
theme_minimal() +  
theme(plot.title = element_text(size = 16, face = "bold"),  

axis.title = element_text(size = 14),  
axis.text = element_text(size = 12),  
legend.position = "none")  



# Scatter plot: price vs bathrooms  
ggplot(df_A, aes(x = bathrooms, y = price)) +  

geom_point(size = 3, color = "orange", alpha = 0.6) +  
geom_smooth(method = "lm", se = FALSE, color = "darkblue", size = 1.5) +  
labs(x = "Bathrooms", y = "Price", title = "Relationship between Bathrooms and Price") + 
theme_minimal() +  
theme(plot.title = element_text(size = 16, face = "bold"),  

axis.title = element_text(size = 14),  
axis.text = element_text(size = 12),  
legend.position = "none")  

# Scatter plot: price vs host_total_listings  
ggplot(df_A, aes(x = host_total_listings_count, y = price)) +  

geom_point(size = 3, color = "black", alpha = 0.6) +  
geom_smooth(method = "lm", se = FALSE, color = "darkgreen", size = 1.5) +  
labs(x = "Host Total Listings", y = "Price", title = "Relationship between Host Total Listings and Prtheme_minimal() +  
theme(plot.title = element_text(size = 16, face = "bold"),  

axis.title = element_text(size = 14),  
axis.text = element_text(size = 12),  
legend.position = "none")  

# Scatter plot: price vs number_of_reviews  
ggplot(df_A, aes(x = number_of_reviews, y = price)) +  

geom_point(size = 3, color = "steelblue", alpha = 0.6) +  
geom_smooth(method = "lm", se = FALSE, color = "darkorange", size = 1.5) +  
labs(x = "Number of Reviews", y = "Price", title = "Relationship between Number of Reviews and 
Price"theme_minimal() +  
theme(plot.title = element_text(size = 16, face = "bold"),  

axis.title = element_text(size = 14),  
axis.text = element_text(size = 12),  
legend.position = "none")  

15 
# Bar plot: price vs host_is_superhost  
ggplot(df_A, aes(x = host_is_superhost, y = price, fill = host_is_superhost)) + geom_bar(stat 

= "summary", fun = mean, position = "dodge") +  
labs(x = "Host Is Superhost", y = "Mean Price", title = "Relationship between Host Is Superhost and Ptheme_minimal() 
+  
theme(plot.title = element_text(size = 16, face = "bold"),  

axis.title = element_text(size = 14),  
axis.text = element_text(size = 12),  
legend.title = element_blank(),  
legend.text = element_text(size = 12))  

#Regression Analysis  
#Train and Test split  
set.seed(40386053)  
index_A <- createDataPartition(df_A$price, p = 0.7, list = FALSE)  
train_A <- df_A[index_A, ]  
test_A <- df_A[-index_A, ]  

index_B <- createDataPartition(df_B$price, p = 0.7, list = FALSE)  
train_B <- df_B[index_B, ]  
test_B <- df_B[-index_B, ]  



#K Fold Cross Validation  
ctrlspecs <- trainControl(method = "cv", number = 10,  

savePredictions = "all")  

# Define the model formulas  
formula <- price ~ .  

#Specify and Train LASSO regression model  

# create vector of potential lambda values  
lambda_vector <- 10ˆseq(5,-5, length = 500)  

# specify LASSO regression model to be estimated using training dataset and 10 fold cross validation prmodel1 <- 
train(price ~ .,data = train_A,  

preProcess = c("center", "scale"),  
method = "glmnet", tuneGrid=expand.grid(alpha=1, lambda = lambda_vector),  

trControl=ctrlspecs, na.action=na.omit)  
# best tuning parameter  
model1$bestTune  

# LASSO regression coefficients (parameter estimates)  
coef(model1$finalModel, model1$bestTune$lambda)  

# Plot log(lambda) & RMSE  
plot(log(model1$results$lambda),  

model1$results$RMSE,  
xlab = "log(lambda)",  
ylab='RMSE')  

plot(log(model1$results$lambda),  

16 
model1$results$Rsquared,  
xlab = "log(lambda)",  
ylab='Rˆ2')  

# Variable Importance  
varImp(model1)  
ggplot(varImp(model1))  

# Model Prediction  
predictions1 <- predict(model1, newdata = test_A)  

# Model Performance/Accuracy  
model1perf <- data.frame(RMSE = RMSE(predictions1, test_A$price), 

Rsquared = R2(predictions1, test_A$price))  
model1perf  

library(randomForest)  

# Create model using Random Forest  
model2 <- train(price ~ ., data = train_A,  

method = "rf",  



trControl = ctrlspecs,  
na.action = na.omit)  

# Variable Importance  
varImp(model2)  
ggplot(varImp(model2))  

# Model Prediction  
predictions2 <- predict(model2, newdata = test_A)  

# Model Performance  
model2perf <- data.frame(RMSE = RMSE(predictions2, test_A$price), 

Rsquare=R2(predictions2, test_A$price))  
model2perf  

# Create model using Support Vector Regression (SVR) 
model3 <- train(price ~ ., data = train_A,  

method = "svmRadial",  
trControl = ctrlspecs,  
na.action = na.omit)  

# Model Prediction  
predictions3 <- predict(model3, newdata = test_A)  

#Model Performance  
model3perf <- data.frame(RMSE = RMSE(predictions3, test_A$price), 

Rsquare=R2(predictions3, test_A$price))  
model3perf  

# Variable Importance  
varImp(model3)  
ggplot(varImp(model3))  

17 
#Visualisations on df_B  
ggplot(df_B, aes(x = longitude, y = price)) +  

geom_point(color = "#0072B2", alpha = 0.6) + # Customize point color and transparency geom_smooth(method = "lm", 
se = FALSE, color = "#D55E00", linetype = "dashed") + # Add a smooth linelabs(x = "Longitude", y = "Price") + # Set x 
and y axis labels  
theme_minimal() # Apply a minimal theme  

ggplot(df_B, aes(x = accommodates, y = price)) +  
geom_jitter(color = "#9072B9", alpha = 0.6) +  
geom_smooth(method = "lm", se = FALSE, color = "#D55E00", linetype = "dashed") + labs(x = 
"Accommodates", y = "Price") +  
theme_minimal()  

# LASSO Model on df_B  
# specify LASSO regression model to be estimated using training dataset and 10 fold cross validation prmodel4 <- 
train(price ~ .,data = train_B,  

preProcess = c("center", "scale"),  
method = "glmnet", tuneGrid=expand.grid(alpha=1, lambda = lambda_vector),  

trControl=ctrlspecs, na.action=na.omit)  
# best tuning parameter  



model4$bestTune  

# LASSO regression coefficients (parameter estimates)  
coef(model4$finalModel, model4$bestTune$lambda)  

# Plot log(lambda) & RMSE  
plot(log(model4$results$lambda),  

model4$results$RMSE,  
xlab = "log(lambda)",  
ylab='RMSE')  

plot(log(model1$results$lambda),  
model1$results$Rsquared,  
xlab = "log(lambda)",  
ylab='Rˆ2')  

# Variable Importance  
varImp(model4)  
ggplot(varImp(model4))  

# Model Prediction  
predictions4 <- predict(model4, newdata = test_B)  

# Model Performance/Accuracy  
model4perf <- data.frame(RMSE = RMSE(predictions4, test_B$price),  

Rsquared = R2(predictions4, test_B$price))  
model4perf  

# Linear Model  
model5 <- lm(formula, data = train_B)  
summary(model5)  

18 


