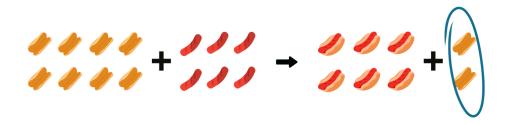
Chemistry 11 Name: _____

Limiting Reagents Stoichiometry

What is a Limiting Reagent?

- The limiting reagent is the reactant that gets used up first in a chemical reaction.
- It limits how much product can be formed.

Analogy


• You have 8 buns and 6 wieners. How many hot dogs can you make?

- What's the limiting reagent?
 - Wieners

What is an Excess Reagent?

• The excess reagent is the reactant that is "leftover" when the reaction is over.

• The excess reagent in this analogy are the two remaining buns.

We determine the limiting reagent using MOLAR RATIOS from the balanced chemical equation.

$$\begin{array}{c} \textbf{1}\,S + \textbf{1}\,Fe \rightarrow \textbf{1}\,FeS \\ & \textbf{S} \\ & \textbf{100}\,g \end{array} \begin{array}{c} \textbf{FeS} \\ & \textbf{157}\,g \end{array} \begin{array}{c} \textbf{not} \\ & \textbf{masses} \\ & \textbf{157}\,g \end{array}$$

The Steps:

- 1. Write the balanced chemical equation.
- 2. Convert all given quantities to moles.
- 3. Calculate how much product could be formed from each reactant. The limiting reagent (the one that runs out first) is the reactant that would produce the least amount of product.
- 4. Use the limiting reagent to calculate the amount of product formed.

Calculation #1:

What is the limiting reagent when 28.0 g of N₂ reacts with 6.0 g of H₂ to produce ammonia?

$$N_2 + 3H_2 \rightarrow 2NH_3$$

Convert all given quantities to moles.

$$\label{eq:Moles of N2} \begin{array}{ll} \text{Moles of N2:} & \frac{28.0~\text{g}}{28.02~\text{g/mol}} = 1.00~\text{mol N}_2 & \text{Moles of H2:} & \frac{6.0~\text{g}}{2.02~\text{g/mol}} & = 2.97~\text{mol H}_2 \\ & 1.00~\text{mol N}_2 \times \frac{2~\text{mol NH}_3}{1~\text{mol N}_2} = \boxed{2.00~\text{mol NH}_3} \\ & \frac{\text{H}_2~\text{ran out when only 1.98 mol of NH}_3~\text{was produced. H}_2~\text{is the limiting reagent.}} & 2.97~\text{mol H}_2 \times \frac{2~\text{mol NH}_3}{3~\text{mol H}_2} = \boxed{1.98~\text{mol NH}_3} \end{array}$$

Use the limiting reagent to calculate the amount of product formed.

$$1.98 \; \mathrm{mol} \; \mathrm{NH_3} \times \underbrace{\begin{array}{c} 17.03 \; \mathrm{g} \\ \mathrm{mol} \end{array}} \; = \; \boxed{33.7 \; \mathrm{g} \; \mathrm{NH_3}}$$

Calculation #2:

a) Calculate the mass of carbon dioxide produced when 44.0 grams of propane and 200.0 grams of oxygen gas react.

$$C_3H_8+5O_2\rightarrow 3CO_2+4H_2O$$
 Moles of C3H8:
$$\frac{44.0~\text{g}}{44.10~\text{g/mol}}=1.00~\text{mol }C_3H_8 \qquad \text{Moles of O}_2\text{:} \quad \frac{200.0~\text{g}}{32.00~\text{g/mol}}=6.25~\text{mol }O_2$$

$$1.00~\text{mol }C_3H_8\times \frac{3~\text{mol }CO_2}{1~\text{mol }C_3H_8}=3.00~\text{mol }CO_2$$

$$C_3H_8\text{ran out when only }3.00~\text{mol of }CO_2\text{ was produced. }C_3H_8 \text{ is the limiting reagent.} \qquad 6.25~\text{mol }O_2\times \frac{3~\text{mol }CO_2}{5~\text{mol }O_2}=3.75~\text{mol }CO_2$$

$$3.00 \; \mathrm{mol} \; \mathrm{CO}_2 imes rac{44.01 \; \mathrm{g}}{\mathrm{mol}} \; = \overline{\left[132 \; \mathrm{g} \; \mathrm{CO}_2
ight]}$$

b) Determine the mass of the 'excess reactant' that remains unreacted after the reaction is complete.

$$\mathrm{C_3H_8} + 5\mathrm{O_2} \rightarrow 3\mathrm{CO_2} + 4\mathrm{H_2O}$$

• Recall, we had 6.25 mol of oxygen available:

$$rac{200.0 ext{ g O}_2}{32.00 ext{ g/mol}} = 6.25 ext{ mol O}_2$$

• Recall, we reacted 1.00 mol of our limiting reagent, propane:

$$1.00~{
m mol}~{
m C_3H_8} imes rac{5~{
m mol}~{
m O_2}}{1~{
m mol}~{
m C_3H_8}} = 5.00~{
m mol}~{
m O_2}~{
m required}$$

• We must calculate moles of O₂ remaining:

$$6.25 \text{ mol available} - 5.00 \text{ mol used} = 1.25 \text{ mol O}_{2remaining}$$

• Finally, we must convert remaining O₂ to mass:

$$1.25\;\mathrm{mol}\times32.00\underline{\mathrm{g}}_{\mathrm{mol}}\;=\boxed{40.0\;\mathrm{g}\;\mathrm{O}_{2}}$$

Calculation #3:

Calculate the mass of hydrogen gas produced when 12.0 grams of magnesium and 30.0 grams of hydrochloric acid react. Also determine the mass of the excess reactant that remains unreacted.

$$\rm Mg + 2HCl \rightarrow MgCl_2 + H_2$$

$$HCl$$
 ran out when only 0.411 mol of H_2 was produced. HCl is the limiting reagent.

$$0.494~ ext{mol}~ ext{Mg} imes rac{1~ ext{mol}~ ext{H}_2}{1~ ext{mol}~ ext{Mg}} = ~0.494~ ext{mol}~ ext{H}_2 \ 0.823~ ext{mol}~ ext{HCl} imes rac{1~ ext{mol}~ ext{H}_2}{2~ ext{mol}~ ext{HCl}} = 0.411~ ext{mol}~ ext{H}_2$$

$$0.411 \; \mathrm{mol} \; \mathrm{H_2} \times 2.02 \underline{\quad \mathbf{g} \quad } = \boxed{0.830 \; \mathrm{g \; H_2}}$$

Mass of the excess reactant that remains:

0.411 mol Mg used

Excess Mg =
$$0.494 - 0.411 = 0.083 \text{ mol}$$

$$0.083~\text{mol} \times 24.31~\underline{\text{g}}_{\overline{\text{mol}}} = \boxed{2.02~\text{g Mg remaining}}$$