

Table of Contents

Expanded Prompt: End-to-End Medication Management System for Space Mis (2025–26)	
Table of Contents	
1. High-Level Overview	
2. Core Functional Requirements	
A. User and Medication Verification	
B. Dispensing and Adherence	3
C. Inventory Management and Forecasting	4
D. User Interface and Accessibility	4
3. System Architecture and Integration	4
4. Supporting Evidence and Rationale	6
5. Visual Workflow Example	6
6. Summary	7

1. High-Level Overview

Design an end-to-end medication management system for astronauts that prioritizes:

- Ease of use: Minimal manual input, intuitive interfaces, and hands-free operation.
- Safety: Accurate verification of medication and user, error prevention, and secure access.
- **Efficiency**: Automated tracking, real-time inventory updates, and predictive analytics for supply management.
- **Compatibility**: Robustness in microgravity, integration with space hardware, and adaptability for deep space missions.

2. Core Functional Requirements

A. User and Medication Verification

• Facial Recognition:

- Authenticate both astronauts and authorized Earth-based staff during medication dispensing.
- Ensure traceability and accountability for every dose administered.

• Pill Recognition:

- Use Al-powered computer vision to identify pills by shape, color, and imprint.
- Cross-check dispensed medication against prescription records to prevent errors.

• Voice Prompts and Natural Language Interaction:

- Guide users through the dispensing process with clear, context-aware voice instructions.
- Enable hands-free confirmation, queries, and error reporting.

B. Dispensing and Adherence

• Automated Dispensing:

- Dispense individual doses based on verified identity and prescription.
- Log each transaction with time, user, and medication details.

• Edible Tracking and Validation:

- Integrate edible markers or ingestible sensors (where feasible) to confirm ingestion and support adherence monitoring.
- o Explore blockchain or digital signatures for tamper-proof validation.

C. Inventory Management and Forecasting

• Real-Time Inventory Tracking:

- Use RFID, computer vision, or IoT sensors to monitor stock levels and usage rates.
- Automatically update inventory after each dispensing event.

• Predictive Analytics:

- Employ AI/ML models to forecast medication exhaustion dates based on usage trends.
- Generate rationing recommendations and automated reorder alerts to prevent shortages.

Scenario Modeling:

Simulate supply disruptions and adjust inventory plans proactively.

D. User Interface and Accessibility

• Human-Centered Design:

- Simple, stepwise interfaces with visual and auditory feedback.
- Accessibility features for users with limited dexterity or visual impairments.

• Remote Monitoring and Alerts:

- Enable earth-based staff to monitor adherence, inventory, and system status.
- o Provide alerts for missed doses, low inventory, or potential errors.

3. System Architecture and Integration

Component	Functionality
Facial Recognition	Secure, real-time user authentication during dispensing
Pill Recognition	Al-based verification of medication identity and dosage
Voice Prompts	Hands-free guidance, confirmation, and error handling

Automated Dispensing Controlled, logged release of individual doses

Inventory Sensors Real-time tracking of stock levels and environmental

conditions

Predictive Analytics Forecasting, rationing, and automated resupply

recommendations

Edible Ingestion confirmation and tamper-proof recordkeeping

Tracking/Validation (where feasible)

User Interface Intuitive, accessible controls and feedback for astronauts

Remote Monitoring Earth-based oversight, alerts, and intervention capability

4. Supporting Evidence and Rationale

- **Al-based facial and pill recognition** systems now achieve >85% accuracy in real-world settings, virtually eliminating wrong-drug and wrong-user errors in pharmacy environments [26],.
- **Voice-activated systems** are proven to increase efficiency and safety in healthcare and aerospace, with up to 40% productivity gains and high user satisfaction [10],[13].
- **Predictive inventory management** using AI reduces stockouts by up to 55% and inventory costs by 40%, critical for missions with limited resupply [30].
- Edible tracking and digital validation are emerging technologies that can further enhance adherence monitoring and supply chain integrity [41].
- **Human-centered design** and hybrid human-AI workflows are essential for user trust, safety, and adaptability in high-stakes, isolated environments.

5. Visual Workflow Example

Medication Management System Workflow:

- User approaches the dispenser → Facial recognition authenticates identity.
- 2. **System displays/announces prescription** → Pill recognition verifies correct medication.
- 3. **Voice prompt guides user** → User confirms or queries via voice.
- 4. **Automated dispensing** → Edible marker (if used) validates ingestion.
- Inventory auto-updated → Predictive analytics forecast next reorder/rationing need.
- 6. **Remote monitoring** → Earth-based staff receive real-time logs and alerts.

6. Summary

The proposed system leverages the latest AI advancements—facial recognition, pill recognition, and voice prompts—integrated with real-time inventory tracking, predictive analytics, and emerging edible tracking technologies. This end-to-end approach ensures medication safety, ease of use, and operational resilience for astronauts, setting a new standard for medication management in space missions.