Computer Architecture (CS2323)

Semester-I, 2023-2024 (Aug - Nov 2023)

Administrivia and logistics

- Course credits: 3
- Teaching segments: 3-6 (7th Sep till 28th Nov)
- Instructor: Rajesh Kedia (rkedia@cse.iith.ac.in)
- TAs:

0

- Lecture schedule: 3 hours a week, P slot (Mon 2.30-3.55 pm, Thu 4.00-5.25 pm)
- Lecture venue: A-LH2 (A-block, Ground floor)
- Instructor contact hours: Just after the lectures or by appointment
- Lab schedule: 2 hours per week in B524 (in two separate batches of 65 each). TBD
- We will use moodle for course management (assignment, marks upload, quiz, etc.)
 - Login through IITH email account and enroll yourself in the course
- Academic honesty during the course is essential
- You are expected to read the textbook in addition to the lectures. Only selected lecture slides, which are not available in the book, will be made available.
- We encourage class participation in the form of classroom interaction as well as discussion over forum in moodle.

Pre-requisites

- Introduction to programming (ID1063/ID1303)
- Digital systems (concept of multiplexers, decoders, registers, etc.)
- Introduction to Data Structures (CS1353)

Course topics: Theory

While the topics would be introduced in general, we will use RISC-V to understand the specifics of an instruction set and the processor design. The following is a high-level outline of the topics.

- 1. Introduction
- 2. Instruction set architecture (ISA)
- 3. Processor design
- 4. Caches and memory hierarchy
- 5. Computer arithmetic
- 6. I/O interfacing
- 7. Recent trends and wrapup

Course topics: Lab and practical

The lab exercises would be primarily based on assembly language programming on RISC-V simulators and C-code to implement certain concepts being taught. We would have some lab related tutorials and hands-on sessions in the B524 lab. Some indicative assignments include:

- 1. Understanding various instructions
- 2. Assembly code development for common mathematical functions
- 3. Understanding various cache architectures and implementing related concepts
- 4. Interfacing with I/O devices

Lab Exercises in this offering:

- 1. Assembly: Basic assembly programming addition/subtraction and familiarity with RIPES
- 2. Assembly: Decode the opcode and Identify the RISC-V Instruction type (R/I/B/S/J/U)
- 3. C/C++: RISC-V Disassembler Convert a given RISC-V machine code to assembly code
- 4. Assembly, on board: Blinking LED on the Sparkfun RED-V board
- 5. C/++: Pipeline stall detector
- 6. C/C++: Cache miss simulation
- 7. Lab exam: (a) GCD computation using assembly language
 - (b) Floating point addition using integer arithmetic

Evaluation components

- 1. In-class quizzes
- 2. Homeworks
- 3. Exam-1
- 4. Exam-2
- 5. Lab assignments
- 6. Lab quiz or Lab exam
- 7. Class participation

Late submission policy:

- 1. **HW:** Late submission upto 24 hours 10% deduction. NO marks will be given for late submission beyond 24 hours.
- 2. Quiz: In-class and hence no late submission allowed.
- 3. **Labs**:
 - a. 10% deduction for delay of every 24 hours or part. Except for medical reasons, submission after a week of the designated lab slot will not be evaluated.

References:

- Computer Organization and Design, The Hardware/Software Interface (RISC-V edition) by David A. Patterson and John L. Hennessy
- The RISC-V Instruction Set Manual, Volume I: Unprivileged ISA, Document Version 20191213

- 3. Digital Design and Computer Architecture (RISC-V edition), By David Harris and Sarah Harris
- 4. Basic Computer Architecture (also available as Computer organization and architecture), version 2.1, By Smruti Ranjan Sarangi

Course schedule

 $\underline{\text{https://docs.google.com/spreadsheets/d/14po8qARA63KEHij2j1YyP4oMsj2Tbdbe235V_znpFq} \\ \underline{w}$

Updates

•