I. Limite d'une fonction à l'infini

1. Limite finie à l'infini

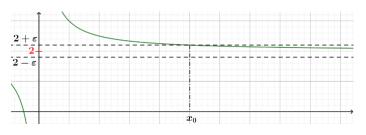
Intuitivement, on dit que la fonction f admet pour limite L en $+ \infty$ si f(x) est aussi proche de L que l'on veut pourvu que x soit suffisamment grand.

Exemple

La fonction définie sur R* par

$$f(x) = 2 + \frac{1}{x}$$

admet pour limite 2 lorsque x tend vers $+\infty$. En effet, les valeurs de la fonction se resserrent autour de 2 dès que x est suffisamment grand. Si l'on prend un intervalle ouvert quelconque contenant 2, toutes les valeurs de la fonction appartiennent à cet intervalle dès que x est suffisamment grand.



Définition 1

On dit que la fonction f admet pour limite L en $+\infty$ si tout intervalle ouvert contenant L contient toutes les valeurs de f(x) dès que x est suffisamment grand et on note f(x) = L

Mathématiquement, on écrira

$$\forall \varepsilon \in R_{+}^{*}, \exists x_{0} \in R, \forall x \in D_{f}, x \geq x_{0} \Longrightarrow |f(x) - L| < \varepsilon$$

∀ signifie « pour tout »

∃ signifie « il existe »

 R^* est l'ensemble de tous les réels strictement positifs

⇒ signifie « implique »

 D_f est l'ensemble de définition de la fonction f.

Définition 2

La droite d'équation y=L est **asymptote** à la courbe représentative de la fonction f en $+\infty$ si f(x)=LLa droite d'équation y=L est **asymptote** à la courbe représentative de la fonction f en $-\infty$ si f(x)=L

Remarque

Lorsque x tend vers $+\infty$, la courbe de la fonction se rapproche aussi près que l'on veut de son asymptote sans jamais l'atteindre.

2. Limite infinie à l'infini

Intuitivement, on dit que la fonction f admet pour limite $+ \infty$ en $+ \infty$ si f(x) est aussi grand que l'on veut pourvu que x soit suffisamment grand.

Exemple

La fonction définie par $f(x) = x^2$ a pour limite $+ \infty$ lorsque x tend vers $+ \infty$. En effet, les valeurs de la fonction deviennent aussi grandes que l'on souhaite dès que x est suffisamment grand. Si on prend un réel a quelconque, l'intervalle a; $+ \infty$ contient toutes les valeurs de la fonction dès que x est suffisamment grand.

Définition 3

- On dit que la fonction f admet pour **limite** $+ \infty$ **en** $+ \infty$ si tout intervalle $]a; + \infty[$, a réel, contient toutes les valeurs de f(x) dès que x est suffisamment grand et on note $f(x) = + \infty$
- On dit que la fonction f admet pour **limite** $-\infty$ **en** $+\infty$ si tout intervalle $]-\infty$; b[, b réel, contient toutes les valeurs de f(x) dès que x est suffisamment grand et on note $f(x) = -\infty$

Mathématiquement, on écrira pour caractériser que $f(x) = +\infty$

$$\forall a \in R, \exists x_0 \in R, \forall x \in D_f, x \ge x_0 \Longrightarrow f(x) > a$$

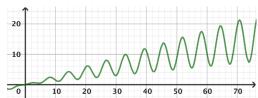
Pour caractériser que $f(x) = -\infty$, on écrira

$\forall b \in R, \exists x_0 \in R, \forall x \in D_f, x \ge x_0 \Longrightarrow f(x) < b$

Remarques

• Une fonction qui tend vers $+ \infty$ lorsque x tend vers $+ \infty$ n'est pas nécessairement croissante.

La fonction définie par f(x) = 0, 2x + 0, $1x \sin \sin x$ en est un exemple.



Il existe des fonctions qui ne possèdent pas de limite infinie. C'est le cas des fonctions sinusoïdales telles que la fonction sinus ou cosinus.



3. Limites des fonctions usuelles

Propriété 1 $x^2 = + \infty$ $x^2 = + \infty$ $x^3 = + \infty$ $x^3 = -\infty$ $\sqrt{x} = + \infty$ $\frac{1}{x} = 0$ $\frac{1}{x} = 0$

II. Limite d'une fonction en un réel A

Intuitivement, on dit que la fonction f admet pour limite $+ \infty$ en A si f(x) est aussi grand que l'on veut pourvu que x soit suffisamment proche de A.

Définition 4

- On dit que la fonction f admet pour **limite** $+ \infty$ **en** A si tout intervalle $]a; + \infty[$, a réel, contient toutes les valeurs de f(x) dès que x est suffisamment proche de A et on note $f(x) = + \infty$
- On dit que la fonction f admet pour **limite** $-\infty$ **en** A si tout intervalle $]-\infty$; b[, b réel, contient toutes les valeurs de f(x) dès que x est suffisamment proche de A et on note $f(x) = -\infty$

Définition 5

La droite d'équation x = A est **asymptote** à la courbe représentative de la fonction f si $f(x) = + \infty$ ou $f(x) = -\infty$

Remarques

La première définition équivaut à dire que

$$f(x) = + \infty \Leftrightarrow \forall a \in R, \exists \varepsilon > 0, \forall x \in D_{f'} | x - A | < \varepsilon \Rightarrow f(x) > a$$

$$f(x) = -\infty \Leftrightarrow \forall a \in R, \exists \varepsilon > 0, \forall x \in D_{f'} | x - A | < \varepsilon \Rightarrow f(x) < a$$

• Certaines fonctions admettent des limites différentes en un réel A selon que x > A ou x < A. Dans ce cas, on parle de **limite à gauche** (en A^-) ou **à droite** (en A^+) et l'on peut caractériser ces limites de la manière suivante

$$f(x) = + \infty \Leftrightarrow \forall a \in R, \exists \varepsilon > 0, \forall x \in D_{f'} \ A - \varepsilon < x < A \Rightarrow f(x) > a$$

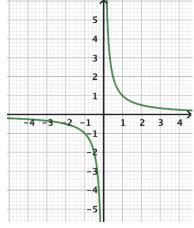
$$f(x) = + \infty \Leftrightarrow \forall a \in R, \exists \varepsilon > 0, \forall x \in D_{f'} \ A < x < A + \varepsilon \Rightarrow f(x) > a$$

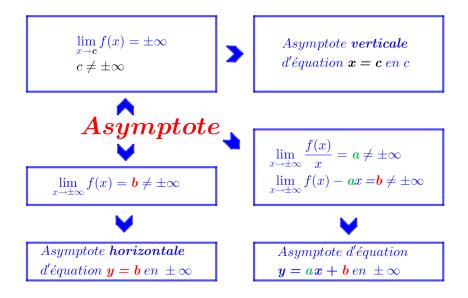
Exemple

Considérons la fonction inverse définie sur \mathbb{R}^* par

$$f(x) = \frac{1}{x}$$

Si x < 0, alors f(x) tend vers $-\infty$ et on note $f(x) = -\infty$ Si x > 0, alors f(x) tend vers $+\infty$ et on note $f(x) = +\infty$ On parle de limite à gauche de 0 et de limite à droite de 0.





Déterminer graphiquement des limites d'une fonction

Vidéo https://youtu.be/9nEJCL3s2eU

III. Opérations sur les limites

 α peut désigner + ∞ , – ∞ ou un nombre réel.

1. Limite d'une somme

f(x)	L	i	L	+ ∞	- ∞	+ ∞
g(x)	L'	+ ∞ - ∞		+ ∞	- 8	- 8
(f(x) + g(x))	L + L'	+ ∞	- ∞	+ ∞	- ∞	F.I.*

^{*} Forme indéterminée : on ne peut pas prévoir la limite éventuelle.

2. Limite d'un produit

f(x)	L	L > 0		L < 0		+ ∞	- ∞	+ ∞	0
g(x)	L'	+ ∞	- ∞	+ ∞	- ∞	+ ∞	- 8	- 8	±∞
$f(x)\times g(x)$	L×L'	+ ∞	- ∞	- ∞	+ ∞	+ &	+ 8	- 8	F.I.

3. Limite d'un quotient

f(x)	L	L	<i>L</i> ∈]0; + ∞]		<i>L</i> ∈[− ∞; 0[0	+ 8		- 8		±8
g(x)	<i>L</i> '≠0	±∞	0+	0	0+	0	0	L' > 0	L' < 0	L' > 0	L' < 0	±∞
$\frac{f(x)}{g(x)}$	L L'	0	8	8	8	8 +	F.I.	+ ∞	- 8	8	+ 8	F.I.

 $g(x) = 0^+$ indique que g tend vers 0 par valeurs **positives**.

 $g(x) = 0^{-}$ indique que g tend vers 0 par valeurs **négatives**.

Exemple

$$(x-5)(3+x^2)$$
? **Solution**

Par somme de limites,

$$(x-5) = - \infty \ et \left(3 + x^2\right) = + \infty$$

Donc, par produit de limites,

$$(x-5)(3+x^2)=-\infty$$

Méthode

Lever une forme indéterminée sur les fonctions polynômes et rationnelles

🕎 Vidéo https://youtu.be/4NQbGdXThrk

Vidéo https://youtu.be/8tAVa4itblc

Vidéo https://youtu.be/pmWPfsQaRWI

Calculer

1.
$$\left(-3x^3+2x^2-6x+1\right)$$
 2. $\frac{2x^2-5x+1}{6x^2-5}$ 3. $\frac{3x^2+2}{4x-1}$

Solution

1. Il s'agit d'une forme indéterminée. Soit $x \in R$,

$$-3x^{3} + 2x^{2} - 6x + 1 = x^{3} \left(-3 + \frac{2}{x} - \frac{6}{x^{2}} + \frac{1}{x^{3}}\right)$$

Or,

$$\frac{2}{x} = \frac{6}{x^2} = \frac{1}{x^3} = 0$$

Donc par somme de limites,

$$\left(-3 + \frac{2}{x} - \frac{6}{x^2} + \frac{1}{x^3}\right) = -3$$

Or,

$$x^3 = + \infty$$

Donc, par produit de limites,

$$x^{3}\left(-3+\frac{2}{x}-\frac{6}{x^{2}}+\frac{1}{x^{3}}\right)=-\infty$$

Donc

$$\left(-3x^3 + 2x^2 - 6x + 1\right) = -\infty$$

2. Il s'agit d'une forme indéterminée. Soit $x \in R^* \setminus \{x \in R \mid 6x^2 - 5 = 0\}$, $\frac{2x^2 - 5x + 1}{6x^2 - 5} = \frac{x^2}{x^2} \times \frac{2 - \frac{5}{x} + \frac{1}{x^2}}{6 - \frac{5}{x}} = \frac{2 - \frac{5}{x} + \frac{1}{x^2}}{6 - \frac{5}{x}}$

$$\frac{2x^2 - 5x + 1}{6x^2 - 5} = \frac{x^2}{x^2} \times \frac{2 - \frac{5}{x} + \frac{1}{x^2}}{6 - \frac{5}{2}} = \frac{2 - \frac{5}{x} + \frac{1}{x^2}}{6 - \frac{5}{2}}$$

Or,

$$\left(\frac{5}{x}\right) = \left(\frac{1}{x^2}\right) = \left(\frac{5}{x^2}\right) = 0$$

Donc, par somme de limites,

$$\lim_{x \to +\infty} \left(2 - \frac{5}{x} + \frac{1}{x^2} \right) = 2 \text{ et } \lim_{x \to +\infty} \left(6 - \frac{5}{x^2} \right) = 6$$

Donc, par quotient de limites,

$$\lim_{x \to +\infty} \frac{2 - \frac{5}{x} + \frac{1}{x^2}}{6 - \frac{5}{x^2}} = \frac{2}{6} = \frac{1}{3}$$

et donc

$$\lim_{x \to +\infty} \frac{2x^2 - 5x + 1}{6x^2 - 5} = \frac{1}{3}$$

3. Il s'agit d'une forme indéterminée. Soit $x \in \mathbb{R}^* \setminus \{\frac{1}{4}\}$,

$$\frac{3x^2+2}{4x-1} = \frac{x^2}{x} \times \frac{3+\frac{2}{x^2}}{4-\frac{1}{x}} = x \times \frac{3+\frac{2}{x^2}}{4-\frac{1}{x}}$$

Or,

$$\frac{2}{x^2} = \frac{1}{x} = 0$$

Donc, par somme de limites,

$$\lim_{x \to -\infty} \left(3 + \frac{2}{x^2} \right) = 3 \text{ et } \lim_{x \to -\infty} \left(4 - \frac{1}{x} \right) = 4$$

Donc, par quotient de limites,

$$\lim_{x \to -\infty} \frac{3 + \frac{2}{x^2}}{4 - \frac{1}{x}} = \frac{3}{4}$$

Or,

$$\lim_{x \to -\infty} x = -\infty$$

donc comme produit de limites

$$\lim_{x \to -\infty} x \times \frac{3 + \frac{2}{x}}{4 - \frac{1}{x}} = -\infty$$

Et donc

$$\lim_{x \to -\infty} \frac{3x^2 + 2}{4x - 1} = - \infty$$

Méthode

Lever une forme indéterminée sur les fonctions avec des radicaux

Vidéo https://youtu.be/n3XapvUfXJQ

Vidéo https://youtu.be/y7Sbqkb9RoU

Calculer

1.
$$(\sqrt{x+1} - \sqrt{x})$$
 2. $(\frac{\sqrt{x-1}-2}{x-5})$

Solution

1. Il s'agit d'une forme indéterminée. Soit $x \in R$,

$$\sqrt{x+1} - \sqrt{x} = \frac{(\sqrt{x+1} - \sqrt{x})(\sqrt{x+1} + \sqrt{x})}{\sqrt{x+1} + \sqrt{x}} = \frac{x+1-x}{\sqrt{x+1} + \sqrt{x}} = \frac{1}{\sqrt{x+1} + \sqrt{x}}$$

0r

$$\sqrt{x+1} = \sqrt{x} = + \infty$$

Donc, par somme de limites,

$$(\sqrt{x+1} + \sqrt{x}) = + \infty$$

Et donc par quotient de limites,

$$\left(\frac{1}{\sqrt{x+1}+\sqrt{x}}\right) = 0$$

Donc

$$\left(\sqrt{x+1}-\sqrt{x}\right) = 0$$

2. Remarquons que

$$(\sqrt{x-1}-2) = \sqrt{5-1}-2 = 0 \text{ et } x-5 = 0$$

$$(\sqrt{x-1}-2) = \sqrt{5-1}-2 = 0 \text{ et } x-5 = 0$$
Il s'agit d'une forme indéterminée. Soit $x \in [1; 5[\cup]5; +\infty[$,
$$\frac{\sqrt{x-1}-2}{x-5} = \frac{(\sqrt{x-1}-2)(\sqrt{x-1}+2)}{(x-5)(\sqrt{x-1}+2)} = \frac{x-1-4}{(x-5)(\sqrt{x-1}+2)} = \frac{x-5}{(x-5)(\sqrt{x-1}+2)} = \frac{1}{\sqrt{x-1}+2}$$
On per somme et somme sition de limites

Or, par somme et composition de limites

$$(\sqrt{x-1}+2) = \sqrt{5-1}+2=4$$

Donc par quotient de limites,

$$\left(\frac{\sqrt{x-1}-2}{x-5}\right) = \left(\frac{1}{\sqrt{x-1}+2}\right) = \frac{1}{4}$$

Méthode

Déterminer une asymptote

Vidéo https://youtu.be/0LDGK-QkL80

Vidéo https://youtu.be/pXDhrx-nMto

1. Soit f la fonction définie sur $R \setminus \{2\}$ par

$$f(x) = \frac{3x+1}{2-x}$$

Démontrer que la droite d'équation y=-3 est asymptote horizontale à la courbe représentative de f en $+\infty$ **Solution**

Il faut donc démontrer que

$$\frac{3x+1}{2-x} = -3$$

Soit $x \in R^{+} \setminus \{2\}$,

$$\frac{3x+1}{2-x} = \frac{x}{x} \times \frac{3+\frac{1}{x}}{\frac{2}{x}-1} = \frac{3+\frac{1}{x}}{\frac{2}{x}-1}$$

Or,

$$\frac{1}{r} = \frac{2}{r} = 0$$

Donc, par somme de limites,

$$\left(3 + \frac{1}{x}\right) = 3 \operatorname{et}\left(\frac{2}{x} - 1\right) = -1$$

Et, donc par quotient de limites,

$$f(x) = \frac{3 + \frac{1}{x}}{\frac{2}{x} - 1} = -3$$

2. Soit g la fonction définie sur $R \setminus \{4\}$ par

$$g(x) = \frac{2x}{x-4}$$

Démontrer que la droite d'équation x=4 est asymptote verticale à la courbe représentative de g. **Solution**

Il faut donc démontrer que la limite la fonction *g* possède une limite infinie en 4.

$$x - 4 = 0^{-} et 2x = 8$$

Donc, par quotient des limites,

$$\frac{2x}{x-4} = -\infty$$

Par ailleurs,

$$x - 4 = 0^+ et 2x = 8$$

Donc, par quotient des limites,

$$\frac{2x}{x-4} = + \infty$$

On en déduit que la droite d'équation x = 4 est une asymptote verticale à la courbe représentative de la fonction g.

Remarque

$$\frac{2x}{x-4} = \frac{2x}{x-4} et \frac{2x}{x-4} = \frac{2x}{x-4}$$

IV. Fonctions composées

1. Définition

Définition 6

Soit f et g deux fonctions telles $g(D_g) \subset D_f$ (Autrement dit, l'image par g de l'ensemble de définition de la fonction g est inclus dans le domaine de définition de la fonction f). La fonction h est la **composée** des fonctions f et g et l'on note $h = f \circ g$ si

$$\forall x \in D_{g}, h(x) = f(g(x)) = f \circ g(x)$$

Exemples

Soient les fonctions f, g et h définies par

$$\forall x \in R_+, \ f(x) = \sqrt{x} \ \forall x \in R, \ g(x) = x^2 + 1 \ \forall x \in R^*, \ h(x) = \frac{1}{x}$$

$$\forall x \in R, \ f \circ g(x) = f(g(x)) = \sqrt{x^2 + 1} \left(x^2 + 1 \text{ \'etant toujours strictement positif}\right)$$

$$\forall x \in R_+, \ g \circ f(x) = \left(\sqrt{x}\right)^2 + 1 = x + 1 \ (x \ étant \ positif)$$

$$\forall x \in R, \ h \circ g(x) = h(g(x)) = \frac{1}{x^2 + 1}$$

$$\forall x \in \mathbb{R}^*, g \circ h(x) = g(h(x)) = \left(\frac{1}{x}\right)^2 + 1 = \frac{1}{x^2} + 1$$

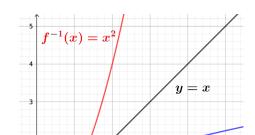
$$\forall x \in R_{+}^*, f \circ h(x) = f(h(x)) = \sqrt{\frac{1}{x}} = \frac{1}{\sqrt{x}}$$

$$\forall x \in R_{+}^*, h \circ f(x) = h(f(x)) = \frac{1}{\sqrt{x}}$$

$$\forall x \in R^*, h \circ h(x) = h(h(x)) = \frac{1}{1} = 1 \times \frac{x}{1} = x$$

Remarques

• En général, $f \circ g \neq g \circ f$



• Si f et g sont des **bijections** (toute image possède un unique antécédent) et si pour tout $x \in D_{g'}$, $f \circ g(x) = x$ ou si, pour tout $x \in D_{f'}$, $g \circ f(x) = x$ alors les fonctions f et g sont des **fonctions réciproques**. Leurs représentations graphiques sont symétriques par rapport à la droite d'équation y = x. Par exemple, la fonction inverse h est sa propre fonction réciproque sur R. La fonction carré et la fonction racine sont des fonctions réciproques sur R_{\perp} .

2. Limite d'une fonction composée

Soit la fonction f définie sur $]\frac{1}{2}$; $+ \infty[$ par

$$f(x) = \sqrt{2 - \frac{1}{x}}$$

On souhaite calculer la limite de la fonction f en $+ \infty$

On considère les fonctions u et v définies par

$$u(x) = \sqrt{x} \ et \ v(x) = 2 - \frac{1}{x}$$

Ainsi,

$$f(x) = u(v(x)) = u \circ v(x)$$

On lit « u rond v de x ». On dit alors que f est la **composée** de la fonction v par la fonction u. Or,

$$\frac{1}{x} = 0$$

Donc, par somme de limites,

$$v(x) = 2$$

Donc, par composition des limites,

$$\sqrt{2 - \frac{1}{x}} = \sqrt{v(x)} = \sqrt{2}$$

Théorème 1

 α , β , γ peuvent désigner $+\infty$, $-\infty$ ou un nombre réel.

Si $v(x) = \beta$ et $u(x) = \gamma$ alors $u \circ v(x) = u(v(x)) = \gamma$

- Admis –

Méthode

Déterminer la limite d'une fonction composée

Vidéo https://youtu.be/DNU1M3Ii76k

Calculer
$$\sqrt{\frac{4x-1}{2x+3}}$$

Solution

On commence par calculer la limite, lorsque x tend vers $+\infty$, de la fonction v définie sur $R\setminus\left\{-\frac{3}{2}\right\}$ par

$$v(x) = \frac{4x-1}{2x+3}$$

Il s'agit d'une forme indéterminée. Soit $x \in R^* \setminus \left\{-\frac{3}{2}\right\}$.

$$v(x) = \frac{4x-1}{2x+3} = \frac{x}{x} \times \frac{4-\frac{1}{x}}{2+\frac{3}{x}} = \frac{4-\frac{1}{x}}{2+\frac{3}{x}}$$

Or, par somme des limites,

$$4 - \frac{1}{x} = 4 et 2 + \frac{3}{x} = 2$$

Donc, par quotient des limites,

$$v(x) = \frac{4-\frac{1}{x}}{2+\frac{3}{x}} = \frac{4}{2} = 2$$

Donc, par composition des limites,

$$\sqrt{\frac{4x-1}{2x+3}} = \sqrt{2}$$

V. Limites et comparaisons

1. Théorème de comparaison

Théorème de comparaison

Soient m, $M \in \mathbb{R}$. Soient f et g deux fonctions définies sur un intervalle m; $+\infty$ [telles que

$$\forall x \in]m; + \infty[, f(x) \leq g(x)]$$

- Si $f(x) = + \infty$ alors $g(x) = + \infty$
- Si $g(x) = -\infty$ alors $f(x) = -\infty$

Soit h et p deux fonctions définies sur un intervalle $]-\infty$; M[telles que

$$\forall x \in]-\infty$$
; $M[,h(x) \leq p(x)$

- Si $h(x) = + \infty$ alors $p(x) = + \infty$
- Si $p(x) = -\infty$ alors $h(x) = -\infty$

Démonstration du premier cas

Soit $a \in]m$; $+ \infty[$, on sait que

$$f(x) = + \infty$$

donc il existe $x_0 \in]m$; $+ \infty [$ tel que

$$\forall x \in]m; + \infty[, x \ge x_0 \Longrightarrow f(x) > a$$

Par ailleurs,

$$\forall x \in]m; + \infty[, f(x) \leq g(x)]$$

Donc, soit $x \in]m$; $+ \infty[, x \ge x_0]$

$$g(x) \ge f(x) > a$$

et donc

$$g(x) = + \infty$$

2. Théorème d'encadrement

Théorème des gendarmes

Soit f, g et h trois fonctions définies sur un intervalle a; $+\infty$, telles que pour tout réel x>a, $f(x) \le g(x) \le h(x)$

$$\operatorname{Si} f(x) = h(x) = L \operatorname{alors} g(x) = L$$

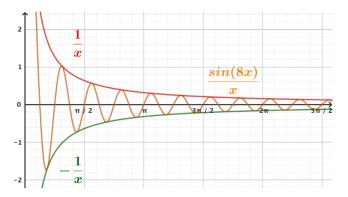
Remarque

Le théorème reste valable si $L = \pm \infty$

Par abus de langage, on pourrait dire que les fonctions f et h (les gendarmes) se resserrent autour de la fonction g pour des valeurs de x suffisamment grandes pour la faire tendre vers la même limite.

On peut bien le voir sur le graphique ci-contre où les fonctions f, g, h sont définies sur R^* par

fonctions
$$f$$
, g , h sont définies sur R^*_+ par
$$f(x) = -\frac{1}{x} g(x) = \frac{\sin \sin (8x)}{x} h(x) = \frac{1}{x}$$



Méthode

Utiliser les théorèmes de comparaison et d'encadrement

Vidéo https://youtu.be/OatkpYMdu7Y

Vidéo https://youtu.be/Eo1jvPphja0

Calculer

1.
$$\lim_{x \to +\infty} (x + \sin x)$$
 2. $\lim_{x \to +\infty} \frac{x \cos x}{x^2 + 1}$

Solution

1. La fonction sinus n'admet pas de limite en $+\infty$. Remarquons que, soit $x \in R$,

$$-1 \le \sin \sin x \Leftrightarrow x - 1 \le x + \sin \sin x$$

Or,

$$\lim_{x\to +\infty} (x-1) = + \infty$$

donc, d'après le théorème de comparaison,

$$\lim_{x \to +\infty} (x + \sin x) = + \infty$$

2. La fonction cosinus n'admet pas de limite en $+\infty$. Remarquons que, soit $x \in R_{\perp}^*$,

$$x^2 + 1 > 0$$

donc

 $-1 \le \cos \cos x \le 1 \Leftrightarrow -x \le x \cos \cos x \le x \Leftrightarrow -\frac{x}{x^2+1} \le \frac{x \cos \cos x}{x^2+1} \le \frac{x}{x^2+1} \Leftrightarrow -\frac{x}{x^2} \le -\frac{x}{x^2+1} \le \frac{x \cos \cos x}{x^2+1} \le \frac{x}{x^2+1} \le \frac{x}{x^2} \le 0$ Or,

$$\lim_{x \to +\infty} \left(-\frac{1}{x} \right) = \lim_{x \to +\infty} \left(\frac{1}{x} \right) = 0$$

Donc, d'après le théorème des gendarmes,

$$\lim_{x\to+\infty}\frac{x\cos x}{x^2+1}=0$$

Remarque

Soit $x \in R_{+}^{*}$,

$$\frac{x}{\frac{2}{x^2+1}} = \frac{x}{x^2} \times \frac{1}{1+\frac{1}{x^2}} = \frac{1}{x} \times \frac{1}{1+\frac{1}{x^2}}$$

Or, par somme de limites,

$$\lim_{x \to +\infty} \left(\frac{1}{x} \right) = 0 \ et \ \lim_{x \to +\infty} \left(1 + \frac{1}{x^2} \right) = 1$$

Donc, par quotient et produit de limites,

$$\lim_{x \to +\infty} \left(\frac{x}{x^2 + 1} \right) = 0$$

0

 \boldsymbol{x}

f''(x)

f'

f'(x)

f

 $+\infty$

+

VI. Limites et croissance comparée avec l'exponentielle

Propriété 2 (croissance comparée)

Soit $n \in \mathbb{Z}$,

$$\frac{e^x}{x^n} = + \infty et \, x^n e^x = 0$$

Démonstration

• Soit la fonction f définie sur \mathbb{R} par $f(x) = e^x - \frac{x^2}{2}$

$$\forall x \in R_{+}^{*}, \ f'(x) = e^{x} - x$$

$$\forall x \in R_{\perp}^{*}, \ f''(x) = e^{x} - 1 > 0$$

On dresse alors le tableau de variations ci-contre.

On en déduit que

$$\forall x \in R_{+}^* f(x) > 0 \Leftrightarrow e^x > \frac{x^2}{2} \Leftrightarrow \frac{e^x}{x} > \frac{x}{2}$$

Or,

$$\frac{x}{2} = + \infty$$

Donc, d'après le théorème de comparaison,

$$\frac{e^x}{x} = + \infty$$

Soit $n \in N^*$ et soit $x \in R_+^*$.

$$\frac{e^{x}}{x^{n}} = \frac{\left(e^{\frac{x}{n}}\right)^{n}}{x^{n}} = \left(\frac{e^{\frac{x}{n}}}{x}\right)^{n} = \left(\frac{1}{n} \times \frac{e^{\frac{x}{n}}}{x}\right)^{n}$$

Posons

$$X = \frac{x}{n}$$

Remarquons que si x tend vers $+\infty$ alors X tend aussi vers $+\infty$ donc, par produit des limites et ce qui précède,

$$\left(\frac{1}{n} \times \frac{e^{\frac{x}{n}}}{\frac{x}{n}}\right) = \left(\frac{1}{n} \times \frac{e^{x}}{x}\right) = + \infty$$

On en déduit que, par produit de limites,

$$\frac{e^x}{r^n}$$
 =+ ∞ (2)

Le cas $n \in \mathbb{Z}_{-}$ est trivial et découle du produit des limites en remarquant que $-n \in \mathbb{N}$ et soit $x \in \mathbb{R}_{+}^{+}$,

$$\frac{1}{x^n} = x^{-n}$$

Par ailleurs, soit $n \in \mathbb{N}^*$ et soit $x \in \mathbb{R}_+^*$, en posant X = -x,

$$x^{n}e^{x} = (-X)^{n}e^{-X} = \frac{(-1)^{n}}{\frac{e^{x}}{X^{-n}}}$$

Or,

$$-\frac{1}{\frac{e^{x}}{x^{-n}}} \le \frac{\left(-1\right)^{n}}{\frac{e^{x}}{x^{-n}}} \le \frac{1}{\frac{e^{x}}{x^{-n}}}$$

Et, d'après l'égalité (2) et par quotient des limites et

$$\lim_{X \to +\infty} \left(-\frac{1}{\frac{e^x}{x^{-n}}} \right) = \lim_{X \to +\infty} \left(\frac{1}{\frac{e^x}{x^{-n}}} \right) = 0$$

Donc, d'après le théorème d'encadrement (ou des gendarmes)

$$x^n e^x = \lim_{X \to +\infty} \left(\frac{(-1)^n}{\frac{e^x}{X^{-n}}} \right) = 0$$

Le cas $n \in \mathbb{Z}$ est trivial et découle du produit des limites

Remarque

Dans le cas de limites infinies, la fonction exponentielle impose sa limite devant les fonctions puissances. Sa croissance est plus rapide.

Propriété 3

$$\frac{e^x-1}{x} = 1$$

Démonstration

Soit $x \in R^{\uparrow}$.

$$\frac{e^{x}-1}{x} = \frac{e^{x}-e^{0}}{x-0}$$

On reconnaît alors le **taux d'accroissement** de l'exponentielle entre 0 et x qui tend vers le nombre dérivé de l'exponentielle en 0 lorsque x tend vers 0. Ainsi, en remarquant que la fonction exponentielle est sa propre dérivée,

$$\frac{e^{x}-1}{x}=e^{0}=1$$

Méthode

Calculer des limites

Vidéo https://youtu.be/f5i_u8XVMfc

Vidéo https://youtu.be/GoLYLTZFaz0

Calculer les limites suivantes.

a.
$$(x + e^{-3x})$$

b.
$$\left(e^{1-\frac{1}{x}}\right)$$

C.
$$\frac{e^x + x}{e^x - x^2}$$

Solution

a.
$$e^{-3x} = 0$$
 donc $(x + e^{-3x}) = + \infty$

a.
$$e^{-3x} = 0$$
 donc $\left(x + e^{-3x}\right) = +\infty$
b. $\left(1 - \frac{1}{x}\right) = 1$ donc $\left(e^{1 - \frac{1}{x}}\right) = e^{1} = e^{1}$

c. Soit $x \in R$ tel que $e^x - x^2 \neq 0$,

$$\frac{e^{x} + x}{e^{x} - x^{2}} = \frac{e^{x}}{e^{x}} \times \frac{1 + \frac{x}{e^{x}}}{1 - \frac{x^{2}}{e^{x}}} = \frac{1 + \frac{x}{e^{x}}}{1 - \frac{x^{2}}{e^{x}}}$$

Par croissances comparée,

 $\frac{e^x}{x} = \frac{e^x}{x^2} = + \infty$

Donc

 $\frac{x}{e^x} = \frac{x^2}{e^x} = 0$

Donc, par quotient de limites,

$$\frac{e^{x}+x}{e^{x}-x^{2}} = \frac{1+\frac{x}{e^{x}}}{1-\frac{x^{2}}{e^{x}}} = \frac{1}{1} = 1$$