
Overmatch Software Armory: Overcoming Barriers to
Deployment of Modern Naval C2 Software

C. Johnson A. George D. Jenkins
NIWC Pacific NIWC Pacific NIWC Pacific

Christopher.e.johnson40.civ@us.navy.
mil

Amanda.j.george7.civ@us.navy.
mil

David.w.jenkins5.civ@us.navy.
mil

Abstract

Modern naval command and control (C2) requires software to enable the rapid ingestion, synchronization, and

understanding of a multitude of data required to inform naval activities. The naval C2 environment is both highly

complex and extremely critical, requiring the Navy C2 systems and software to rapidly react to mission needs to its ships

at sea in bandwidth challenged environments. Given the vital nature of C2 software in the modern battlefield, it is

necessary for the military enterprises to prioritize the rapid development and delivery of software. This will require a

paradigm shift.

For decades software delivery to US Navy ships occurred by engineers and scientist packing up volumes of CD’s or 4MM

tapes, in some cases scheduling airfare to fly to wherever the ship may be. Weeks would be spent aboard the platform

loading the latest version of software, testing it out to ensure everything functioned properly, and then going through a

turnover with ships company for acceptance once everything was up and functional. NIWC Pacific has changed that

paradigm by realizing the promise of DevSecOps for rapid and responsive software development, and “Over the Air”

(OTA) delivery of new software and version updates to Navy ships.

Changes to methods of software development from the traditional “waterfall model” to “the iterative model” then the

“spiral model” to “agile”, and now “DevSecOps” have evolved the process of software delivery to provide rapid capability

advancements to the warfighters wherever they are, whenever they need it. Additional designs and development

patterns have changed from monolithic large bang applications to a smaller micro-service architecture where containers

and smaller size applications are delivered enabling more efficient use of the limited bandwidth that ships are forced to

operate with.

NIWC Pacific has responded to this challenge by creating a robust DevSecOps environment and methods of deploying

software “Over the Air” (OTA), with limited to no onboard support for installation. It also provides for the possibility of

rolling back to a previous version should a new install prove problematic. The challenge of delivering rapidly responsive

software capability OTA for C2 has provided many lessons learned in overcoming challenges that are applicable to the

weapons systems software development community.

This paper details the creation of the DevSecOps environment, the Overmatch Software Armory, that provides Command

and Control (C2) capability to ships and submarines across the US Navy and provides a set of lessons learned for the

community to utilize in overcoming common barriers to C2 software development and deployment across US military

services and with international partners. Additionally, this paper proposed a set of metrics to measure the progress of

the paradigm change and the benefits of utilizing the Overmatch Software Armory to rapidly deploy C2 software over the

air.

1​ INTRODUCTION

For decades, software delivery to US Navy ships has
occurred by packing up volumes of CD’s or 4MM tapes,
and then flying to wherever the ship happened to be in

port. Weeks would be spent aboard the platform loading
the latest version of software, testing it out to ensure
both that the new program functioned properly, and that
this newest install did not break any of the systems it

ICCRTS 2024​ 1

connected to; and then going through a comprehensive
turnover with the Ships Company for final acceptance.
This process was both time and labor intensive, for the
software developers and the sailors. The US Navy has a
limited civilian workforce, thus the time spent by these
engineers and scientists traveling to install software came
at the expense of new software development, since often
the same individuals were tasked with both development
and installation activities.

Comparing such practices to how software is installed in
the modern world demonstrates a stark contrast. The
average user of a computer or a smartphone is a novice
with little understanding of software development, yet
they are able to effectively install and update software
programs without expert help. The ability to receive,
install, and even roll back to previous versions of
software, without the help of an expert, is a goal that our
Navy software development community is striving to
achieve. Today, the U.S. Navy’s program offices are
striving to emulate this commercial example by pursuing
development and installation processes that are easy,
intuitive, and failsafe.

The current generation of software users require rapid
delivery of capability to the warfighter in a flexible,
time-rich environment, and their demands have resulted
in the maturation of the way software is developed and
delivered. Waterfall development has given way to
newer, more flexible methodologies, such as adopting
practices related to iterative and spiral models, Agile, and
DevSecOps. Newer design and development patterns
have changed from monolithic “big bang” applications to
smaller micro-service architectures. In military
applications, where limited bandwidth is often the norm,
containerization and smaller footprint applications have
further enabled delivery to the warfighter. The U.S. Navy
has adopted a paradigm of a “software platform” to serve
as a foundation for shipboard applications. As Rear
Admiral John W. Ailes, U.S. Navy (Retired, and Susan
LaShomb describe in their 2021 Proceedings article, “a
software platform includes the development
environment used to create an application, along with
the ‘stack’ of operation system, middleware, and virtual
machine on which it runs.”1

All of these changes are moving the U.S. DoD towards it’s
vision to “Deliver Resilient Software Capability at the
Speed of Relevance.”2

This paper focuses on the creation of the DevSecOps
environment that provides Command and Control (C2)
capability to ships and submarines across the US Navy,
the Overmatch Software Armory (OSA). The Navy must
be able to rapidly react to mission needs at sea in

bandwidth-challenged environments. Such demands
have taken advantage of the aforementioned
advancements in software development and delivery. In
fact, over seventy (70) “Over the Air” (OTA) installs
occurred in 2023, requiring absolutely no portable
electronic storage at all.

1.1​ OWNING THE PROBLEMS

In 2006, Naval Information Warfare Center (NIWC)
Pacific, at the time known as Space and Naval Warfare
Systems Center Pacific, developed a repository-type
approach to support spiral type software development.
An important element of this approach was to drive the
US Navy toward owning data rights for the software it
was contracting for. Recurring issues with Command and
Control (C2) software systems onboard ships triggered
the need for US Navy software engineers to be able to
review and examine the code base for software to try
and identify the root causes of the observed issues.
Industry partners, rightfully sensitive to intellectual
property rights, often challenged requests for access to
the source code. Subsequently, contractual language and
technical requirements were strengthened, making clear
to industry partners that software developed at the cost
of the Navy would not only be Navy-owned, but also
delivered to a government-managed repository. As a
result, Navy software engineers were more quickly able
to troubleshoot long standing issues, allowing for faster
remediation that improved both the software itself and
the overall reliability of ships’ systems. This repository
stayed up and running for the next twelve years, funded
by local software development projects, and over time it
became more robust. As software development methods
evolved, it added additional tools and capability. For
example, it incorporated Atlassian capabilities, to include
JIRA and Confluence as a collaboration and planning
suite, Jenkins as a build tool, and various other software
testing tools to determine vulnerabilities and Information
Assurance (IA) issues. Installers were able to access this
virtual repository, create installation media, and then
proceed to the ship for install. In design, it served as a
very early DevOps-like environment, but still without the
inherent advantages to an over-the-air (OTA) installation.

1.2​ IT’S GETTING CLOUDY OUTSIDE!

In 2017, the US Navy was embracing the move away from
onsite (and expensive) data centers. “Data center
consolidation” became a popular initiative to help
potentially save the Navy large amounts of money by
shifting much of its data storage and infrastructure
towards the use of Commercial Cloud and Commercial
Cloud Providers (CCPs). Scale, reliability and even
perceived security advantages associated with use of

2​ ​ ICCRTS 2024

CCPs led senior leaders to embrace their adoption.3 The
advent of the Navy Research and Development
Establishment (NR&DE) Commercial Cloud environment
was in fact a first step towards providing the Navy with its
first OTA capability.

Commercial Cloud providers go through a rigorous
accreditation process before being allowed to offer their
services to Federal customers. Once accredited, senior
leaders were highly motivated to begin the process of
system and data migration to the cloud. They soon
learned, though, that the desired benefits of cloud were
easily missed if systems were not ready for migration.
True, commercial cloud compute and storage can be
inexpensive compared to providing like-capability on
premise; however those savings are only fully realized if
systems and data are “cloud-native”. Many program
managers, anxious to realize advertised cost savings, did
not go through the considerable effort to make their
systems more cloud-native in architecture prior to
migration. Such “lift and shift” endeavors caused many
programs to not realize any cost savings, at least not
initially. If fact, simply making a copy of their system and
dumping it into the cloud, in many cases made their
compute and storage bills even more expensive. Other
program leaders hit a different pitfall when they selected
(and paid for) commercial cloud compute offerings that
provided much more services than what their project
required, which caused huge spikes in cloud expenses.
Over time, however, some programs were able to adopt
cloud-native practices and right-size their data usage
within the cloud, and thereby realizing the advantages
offered by the commercial cloud environment.

Since the NR&DE Cloud environment was developmental
in nature, it was built upon the Defense Research and
Engineering Network (DREN), which provided transport
off-premise. The NR&DE allowed projects to realize the
necessary security and advantages of being able to
conduct integration and testing of developmental
products, while reducing costs of maintaining their own
hardware and infrastructure. Each Naval Warfare Center
utilizing the NR&DE was able to connect and procure
commercial cloud services to fit their use case. This
approach allowed everyone to conduct these system
activities in a similar manner. The NR&DE also provided
the necessary Information Assurance (IA) to be covered
by use of the environment via the DREN, and leveraged
the accreditation of the commercial cloud providers. This
resulted in countless hours saved by project staff not
having to obtain a separate Authority to Operate (ATO)
accreditation for their work.

1.3​ THE RITE BEGINNING

Around the same time projects were looking to transition
into the commercial cloud, there was considerable talk
across the Navy about adopting
Development/Security/Operations (DevSecOps)
practices, with the goal of enabling Continuous
Integration/Continuous Delivery (CI/CD) to its systems.
This new development concept would enable programs
to deliver software to the customer much faster, while
still addressing policy & security considerations. The first
of these DevSecOps-type environments was the Rapid
Integration and Test Environment (RITE), which provided
a software pipeline, complete with tailored tooling to
support Static and Dynamic Application Security Testing
(SAST/DAST) and software quality testing. Once compiled,
software would be sent to a downstream repository for
manual integration-type testing prior to release.4

For several years this pipeline served a wide variety of C2
software customers. End-state delivery, however, was not
yet a feature of this software factory still in its infancy.
Technologists were still required to build software media
(tapes and CD’s) from within the directory once it was
approved for release. While state-of-the-art at the time,
the major issue with this environment was its inability to
connect and deploy software to ships at sea or pier side.
Installation teams were still required to spend significant
amounts of time onboard ships, working long hours in
confined spaces, loading and troubleshooting complex
software and hardware issues in order to complete a
shipboard operational check.

2​ A MODERN SOFTWARE FACTORY IS BORN

In 2018, NIWC Pacific (known as SPAWAR Systems Center
Pacific at the time) invested internal funding to build off
the success of RITE and the commercial cloud
environment to the Collaborative Software Armory (CSA).
This environment was a cloud-native commercial
environment utilizing modern tooling and commercial
cloud enabled scalability. The lofty goal of CSA was to
provide the first dedicated, secure development
environment to rapidly build, test, accredit, and deploy
applications to the fleet and warfighter. The work began
in June of 2018, and was completed and operational in
January of 2019. Figure 1 shows the vision of CSA. (As
Figure 1 shows, CSA has been absorbed into the larger
Overmatch Software Armory; this will be addressed in a
later section.)

ICCRTS 2024​ 3

Figure 1: Overmatch Software Factory

Programs utilizing the older pipeline immediately began
migration to the new CSA environment. CSA empowered
program offices to begin controlling their individual
software baselines within a Government owned and
managed software factory, a factory designed to provide
software to the tactical edge. Project cost savings were
achieved thanks to the common use of software tools,
configurations, security overlays, and basic development
practices.

2.1​ APPLICATION ARSENAL

OSA, and CSA before it, relies on Application Arsenal (AA
in Figure 1) for transition software within the
pipeline. It is heavily leveraged for receipt and for
publishing of applications both throughout the Dev
side of the environment but on the Ops side as
well. Applications are not considered “ready” until
they become visible within the Application Arsenal.
Once there, they are understood to be ready to be
used for that next level. For example, in the
development environment, AA is used to transmit
a containerized set of code in the Impact level 4
(IL4) development environment into the Agile Core
Services (ACS) Communal environment for testing,
then into the CANES Collaborative Staging
Environment (CSE) for integration.

Application Arsenal (AA) also provides the “digital
environment where approved applications and
application updates will be stored and ready for
rapid deployment to the fleet.”5 As Figure 1 shows,
AA is used to transmit between different aspects of
the development pipeline, but also leverages ADNS
to transmit the applications to the afloat
environment. Similar to a commercial application
store like Google Play or the Apple iStore, AA
provides an environment where sailors and other
users can go to retrieve applications that fit their
needs. The sailor on a ship can access AA and
download new or newly updated command and

control applications in an “on-demand” format.
This enables truly automated delivery of capability
to the ship, without any additional digital media!

2.2​ ACS COMMUNAL AND CANES CSE

As CSA matured, additional capabilities were added and
developed to create a full software pipeline focused on
delivery to the shipboard CANES environment. Agile Core
Services is a service-oriented architecture for CANEs,
including the Navy’s Tactical Analytics Framework. Digital
Twins of applications, the PaaS, and other dependent
items are all kept in a continuous updated cloud
environment. This provides ease of configuration
management, as well as a running archive of previous
builds in the event that roll-backs are required. This
environment enabled a whole new level of testing and
integration prior to deployment on a shipboard network.6

2.3​ RAPID ASSESS AND INCORPORATE SOFTWARE ENGINEERING
(RAISE)

A critical element to securely delivering software via this
Navy software factory is based on the Rapid Assess and
Incorporate Software Engineering (RAISE) concept. The
RAISE concept is a key component of the Navy’s Cyber
Ready program, as well as enabling speedy delivery of
software.7 This process relies on an Infrastructure as a
Service (IaaS) and Platform as a Service (PaaS)
inheritance model, where the IaaS is responsible for the
majority of the security requirements and associated
Authority to Operate (ATO) for both the PaaS and
applications to leverage.

Figure 2: RAISE Inheritence Model

Each level of the pyramid carries certain RMF control
requirements, with the Infrastructure layer (IaaS)
possessing the majority, the PaaS carrying another
portion, and the Apps any remaining controls. Under this
model, software that is developed within the IaaS and
PaaS enviornment in the software factory inherits the

4​ ​ ICCRTS 2024

controls fof those environments. This inheritance enables
the software to meet the controls that those
environments provide. The software developer is left
with a much smaller set of application level controls that
they must address individually. This enables the software
pipeline executing the various SAST/DAST compliance
checks to cover these controls, assess the security
posture of the latest software build, and enable rapid
deployment to the end state platform requiring the new
software delivery. This ability has revolutionized the
software development and delivery approach that enable
rapid deployment of software to the tactical edge, and
still meet the necessary security requirements to keep
Navy systems and software compliant.

Figure 3: RAISE 2.0 Process for Release

The RAISE 2.0 process requires each application to
undergo a series of Gate Tests that must be satisfied prior
to release into the repository for production as depicted
in the Figure 3 above. There are eight (8) current gate
tests as shown in Figure 4 below. Those tests consist of a
rigorous suite of tests to include SAST, DAST, SBOM, and
classified words testing. Once testing is completed
successfully, the RAISE Platform of Choice (RPOC)
releases the software for the repository available at that
time to end state customers.

Figure 4: RAISE 2.0 Testing Gates

Findings during the gate testing are collected and must
be mitigated within 21 days. All findings and
vulnerabilities of an application from these test must be
mitigated with a residual risk not exceeding
Low/Moderate prior to approval for release.

2.4​ COMPILE TO COMBAT IN 24 HOURS; YOU BUILT IT, NOW
PROVE IT!

Once the CSA software factory hit the streets in January
2019, there were several test events scheduled to test
and demonstrate its capabilities. The Compile to Combat
in 24 hours (C2C24) framework seen in Figure 5 was
highly reliant upon the Collaborative Software Armory
(CSA).

Figure 5: C2C24 Architecture8

The very first test involved sending a lightweight, fully
containerized app from a Naval Operations Center (NOC)
across the NIPRnet to a US Navy ship while it was pier
side. For the test to be considered a success, the
application had to function correctly once it was
delivered to the ship by this new methodology. The test
event was completed, the test results verified, and in a
US Naval milestone, the software application installed
correctly! This humble start proved that Over the Air
(OTA) installations aboard a ship were possible and was a
giant leap forward towards decreasing or even
eliminating the requirement to physically send dedicated
installation teams to execute an application install.9

2.5​ BIG OL’ APPS

ICCRTS 2024​ 5

Currently, Navy software comes in many languages,
complexities, and sizes. For many years, software size was
determined by Source Lines of Code (SLOC) to determine
how large or complex an application would be. The more
complex an application, the more lines of code were
required. As time has evolved in the computer science
community though, many applications have become
smaller, requiring less lines of code. Furthermore, based
on the Inheritance Model above, applications are not
required to bring services already provided by the PaaS
or IaaS, which further reduces their size.

Many current Naval applications have begun greenfield
efforts to meet this very model, and move away from
being monolithic, heavy client-type applications. The
more services an application brings itself, the more
security issues they open themselves up for during
development and deployment. Smaller applications can
be more rapidly updated, or even replaced with even
newer versions, helping with modularity, maintainability,
and sustainability. Such advantages are easily traced to
the creation and utilization of a dedicated software
factory.

Moving from “Big Ol’ Apps” to smaller, modular
applications requires a shift in both mindset and practice
for government and industry software developers. Often
C2 software applications have been procured and
produced as large, standalone applications. These
applications followed waterfall development, where they
provided either 100% capability or none. The move
towards smaller modular applications also enables the
rapid fielding of C2 software that can easily integrate and
provide 70% or 80% of the capability quickly, and then
easily iterate to provide the remaining capability in the
future. The ability to provide a 70% solution in the face of
great need, with low risk of breaking the entire
enviornment is a key enabler of modern C2. As Rear
Admiral John W. Ailes, (U.S. Navy, Retired) and Susan
LaShomb point out in their Proceedings article, “the rapid
fielding of new technology is key to outpacing U.S.
adversaries” (emphasis in the original).10 These
capabilities can be brought to full strength through future
spiral development, and will also give “the fleet and
opportunity to refine requirements and determine which
attributes of a new system are most important and which
areas need improvement.”11

2.6​ OVERMATCH SOFTWARE FACTORY

The success of the Collaborative Software Armory led to
it being selected by the Navy’s Overmatch Effort and
renamed the Overmatch Software Armory.12 The
Overmatch Software Armory “is comprised of OSA Tools,

Agile Core Services, multiple Collaborative Staging
Environments, and the Application Arsenal.13 As shown in
Figure 6, the Overmatch Software Armory has matured to
provide a complete pipeline for software development,
testing, integration, certification, and deployment.

Figure 6: Overmatch Software Factory

6​ ​ ICCRTS 2024

Within OSA, software delivery timelines in most cases
have shrunk from being measured in months, to days.
The visual below demonstrates some of the remarkable
accomplishments since the first OTA delivery thirteen
(13) months ago. Up to that point, as previously
mentioned heavy reliance was on engineers with boots
on deck to all Navy platforms providing an onboard
software delivery installation, groom and test. This
process kept the application installation team tied down
to a single platform for up to 2 weeks. The metrics above
identifies that to date, we have been able to forego
sending engineers shipboard for two plus weeks at a time
to a shipboard platform install. Installs are done via
Application Arsenal (AA) over the air; this reduces the
time spent by an engineer to install the software on the
ship from two weeks down to two to three days. The
reliance of navy engineers to be available for these
installs is basically a comfortability issue where shipboard
personnel are still learning the new technologies to
support being able to install, update, or rollback any
software available via the stack.

Figure 7: Overmatch Software Armory Metrics

Figure 7 defines the current success that the stack has
provided to the Navy since January 2023. Each of these
metrics represents a different aspect of the software
factory and the outcomes it enables.

2.6.1​ Sites

The Sites metric refers to the distinct operational
locations (sites) that software has been deployed. This
includes individual ships as well as shore sites, like the
Naval Operations Centers.

2.6.2​ Fleet Installs

The Fleet Installs metric refers to the amount of software
programs that have been installed. This includes both
completelly new software, as well as updates of software

previously installed.

2.6.3​ Security Domains

The Security Domains metric refers to the different types
of security environments that software has been
deployed to via OSA.

2.6.4​ Containers Delivered

The Containers Delivered metric refers to the total
number of containers that have passed through the
deployment process. The utilization of containers in
building modular software is a key enabler for doing
targeted software updates and deployment over the air
in the Navy’s often band-width limited environment. Each
of the Fleet Installs counted includes one or more
containers deployed. This metric provides a more
granular assessment of the level of effort that the
software designers have put into the software being
deployed, and may act as a proxy for the value in new
capability and updates delivered to the ship.

2.6.5​ User Feedback Events

The User Feedback Events metric refers to the
opportunities that OSA has had to collect user feedback.
User feedback is a key tenet of agile software
development, so increasing this number to provide value
through continuous integration/continuous development
(CI/CD) is crucial to the Navy.

2.6.6​ Wait Time Avoided

The Wait Time Avoided metric refers to the amount of
time that software developers often have to spend
waiting while the software is reviewed in the accrediation
process. This is the amount of time the software is
sitting, without receiving improvements, as various
Authorities to Operate (ATO) or other accreditions are
granted. The reduction in wait time is due to the usage of
the RAISE process and the ability for software to inherit
the majority of the controls from Iaas and PaaS.

2.6.7​ Vulnerabilities Avoided

The Vunerabilities Avoided metric refers to the distinct
software vulnerabilities that have been avoided due to
the rigorous testing utilizing the tools inherent in the
software armory. This is a way to measure the increase in
cyber security that OSA provides.

2.6.8​ Deployment Times

The Deployment Times metric refers to the total time it

ICCRTS 2024​ 7

takes for software to move through the Overmatch
Software Armory. There is variation in each software’s
deployment time as different software will have different
statistics based on its compile time, vulnerabilities, and
other unique characteristics. The less than a week
deployment time for OSA indicates the streamlined and
agile process that software developers are utilizing.

2.7​ THE FIRST OFFICIAL OVER THE AIR INSTALL SHIPBOARD!

In January 2023, the US Navy was able to conduct its first
operational over the air (OTA) install. Just like the
operational test, this represented a monumental
accomplishment. Over a 72-hour period, software was
successfully transmitted over the dedicated network
from the shore-based repository to a ship floating pier
side in San Diego.14 NIWC Pacific engineers and scientists
were shipboard to document and assist with the
numerous technical challenges encountered. Many
lessons were learned through this first evolution. Some
of the larger containers had issues with timeouts,
requiring the engineers to subsequently find solutions.
Queue adjustments and container sizing were adjusted
and applied. On subsequent installs, the solutions applied
resulted in software delivery to be successfully
transmitted in just a few hours. Since January 2023, more
than seventy (70) C2 software applications installed
successfully, demonstrating a powerful new technical
reality for Sailors and the ships they operate.

3​ MANAGING THE OVERMATCH SOFTWARE ARMORY (OSA)

Managing an enterprise-scaled service designed to
provide capability to the Nation’s fleet is quite the
undertaking. It requires seasoned engineers who are
knowledgeable on the latest industry software
development tools, as well as what constitutes an
efficient software development pipeline. They also must
be able to react to individual project issues that arise
when things don’t work as expected. This effort is led by
some of the finest Navy civilian software professionals in
existence, and the Navy relies on equally capable
industry partners that are well-versed both in software
development and with specific software development
tools. Finding such talent, both within the Government or
through Industry, is a significant challenge in and of itself,
especially given the all-too-common problem of finding
sponsors to cover the cost of maintaining a Naval
software factory.

Financing enterprise software factories presents multiple
challenges. Enterprise licenses and the labor to actually
maintain a continual capability are not cheap. While
there are single time “up front costs” from the

architecture, there are also significant continuing costs
for “just keeping the lights on” and maintaining the
environment. Many Navy Commands are not keen or
able to invest large sums of money into “infrastructure IT
plumbing” such as a software factory. Factories
therefore, often have to be self-sustaining, charging the
factory customers based on how much they actually use
the factory tools. The charges to the factory customers
must take into consideration such issues as the costs for
new testing tools, making the architecture more efficient,
and sometimes shifting to cloud-native products vice
third party vendor products. Including these innovation
and planning costs into the rates is essential, but it also
poses a significant challenge every year while budgeting.

The approach of “everyone develops to the same pipeline
configurations” can also present contractual issues when
companies are required to develop products inside a
Government owned/controlled environment. In some
cases, there have been considerations made for
contractors to initially develop within their own
environment. Later in the development process,
however, the code must migrate and compile within the
prescribed factory. This requires contracting officers to
include appropriate clauses spelling out the dedicated
process of how the Government will receive and accept
software in accordance with the contract.

The architecture associated with an enterprise software
factory relies heavily on the underlying transport
backbone of how the factory is built within the
commercial cloud, and how developers are able to
connect to the factory. Network components such as
routers, switches, gateways, and comm links, can each
cause connection issues at any given time. In short, a
factory is often only as good as the network it resides
upon. When network problems occur, end users
sometimes mistakenly blame the factory itself as being
broken, undermining their confidence in the software
factory concept. Efforts are underway, therefore, to
improve the reliability of the underlying network in order
to reduce or even eliminate future outages preventing
access to the factory itself.

4​ LESSONS LEARNED AND ONGOING CHALLENGES

While the Overmatch Software Armory is up and running,
delivering C2 capability to the fleet, there are still a
number of challenges for the NIWC Pacific community
and the U.S. Navy. The lessons learned and ongoing
challenges laid out in this section of the paper need to be
addressed by the entire C2 community. While some of
the challenges are structural, based on the way the U.S.
Navy funds its C2 infrastructure, many of them are also
cultural. The United States Navy and partner nations are

8​ ​ ICCRTS 2024

strong innovators. The need to have modular and
configurable software based solutions that enable
command and control both within and between national
forces has only increased in the last decade. This need
should drive us to continue to vigorously implement the
lessons learned while fiercely tackling the ongoing
challenges.

4.1​ TECHNICAL SOFTWARE DEBT

The Navy has a number of older, monolithic software
programs that have not yet gone through the
modernization processes needed to make them agile and
containerized. The programs are facing a choice now: do
they invest in a re-development effort to become
containerized, lightweight, intuitive to use, and RAISE
focused, or do they continue with business as usual and
focus on work arounds? The crux of the choice comes
down to whether they can garner the resourcing support
and identify a path forward for modernization. As this
paper has shown, the cultural barriers and the lack of
understanding of the true need for and true cost of agile
software development and employment makes this
question much more complex than it would seem at first
inspection.

4.2​ DIY CULTURE

While greenfield software development may be the
easiest to work with in a mature software factory, it’s also
the most prone to utilizing a “Do It Yourself (DIY)”
approach to a software factory. For a software developer
without access to a mature software factory, the
temptation is to start building and testing code with the
resources they have. Then as time goes on, and budgets
offer small amounts of funding, the software developer
acquires resources and tools, eventually creating their
own bespoke software factory-like tool set and process.
These software developers, both individuals and small
teams, may look at the larger software factories and feel
that they don’t need all the capabilities provided in the
package that they would need to pay for. Thus, the
innovation mindset that underpins U.S. Navy software
development can also lead individual software
developers and small teams to focus “DIY” approaches,
rather than understanding the benefits of utilizing a
software factory at scale. This culture must first be
understood, then the needs of these developers must be
addressed to ensure that they are able to balance
innovation with the need to utilize the cyber security,
testing, and collaborative staging environments that will
become crucial as the software matures for deployment.

4.3​ ECONOMIES OF SCALE

The U.S. Navy’s resourcing model for Software Factories
continues to be a challenge. There is currently no
program office providing steady resourcing for the
development of one or more software factories. Software
factories have to split the costs among the set of current
customers, creating sometimes large charges that make it
very difficult for small projects to utilize the capabilities.
In order for software factories to be financially viable
they must achieve economies of scale where they have
sufficient users to share the burden of cost. In the last
couple of years, this problem has been recognized, and a
variety of solutions have been piloted, with varying
degrees of success. This has been further exacerbated by
the Navy’s lack of agility when it comes to purchasing
software subscriptions. The Navy’s acquisition
community is still wrestling with the conundrum of how
to agilely contract for a capability where the demand is
not known up front (software licenses) in a manner that
does not create waste. Again, in the last couple of years,
this problem has been surfaced, but has not yet been
fully solved.

4.4​ A PLETHORA OF SOFTWARE FACTORIES

There is a unique tension between the need to have
sufficient numbers of tailored software factories to
address inherently different production and operational
environments, and the need to keep the number of
software factories small so that they can achieve
economies of scale. The production or operational
environment that C2 software will deploy to is varied.
Some C2 software will deploy to temporary forward
operating bases (as in the case of planning software),
while others will deploy aboard afloat on CANES; still
others will deploy in shore-based cloud production
environments. This variety in final production
environment is driven entirely by where the US Navy
needs to operate it’s C2 software. The variety in
operational environment ensures that a one-sized fits all
software factory is not the answer. The Navy probably
needs more than one software factory, but the actual
number and when it makes sense to build anew or
modify an existing environment is still a question the
community is addressing. Fortunately, there has been a
significant cultural shift lately within the Navy’s Software
Factory Community towards increased transparency and
even self-organization in specialized areas.

4.5​ MEASURING SUCCESS

The current metrics that the Overmatch Software Armory
uses are based on the results that software developers
can achieve by utilizing the factory. These metrics,
however, do not directly measure the effectiveness of the

ICCRTS 2024​ 9

software factory itself. The identification and definition of
metrics for the usefulness of a software factory itself is
an ongoing challenge. It is difficult to separate the
usefulness of the factory itself from a number of
confounding factors like: software developer skill level,
usage of tools within the factory, the initial state of the
code (legacy vs. new), and team resourcing. Variation in
any of these confounding factors will likely change the
success of the code development (and metrics) within
the factory. For example, if a software developer is
entirely unfamiliar with one of the tools, the first time
they use the software factory they will likely have to
spend some time training themselves on the tool. This
additional time could significantly slow the deployment
speed of the software, and if the developer is ineffective,
it could also reduce overall software security. Thus, a
number of other metrics might be useful to help
understand and measure the actual usability of the
software factory itself. This is an ongoing area that these
authors are continuing to study.

4.6​ BURDEN SHARING AND TRAINING

One common technical and cultural problem is
determining which activities are the responsibility of the
software factory, and which are the responsibility of the
software development team. At first glance, the division
of responsibility may seem easy: the software factory is
responsible for providing the tools and environment,
while the software development team is responsible for
using the tools. In practice, these lines often get blurred.
Software developers need to have the skills to use the
tools provided. When a software factory switches out a
tool in it’s suite, then it transfers additional burden onto
the development teams. Who pays for the additional
training that maybe inherent in utilizing a new tool? In
addition to this conundrum, there is often great variation
between the skill sets of various teams. Some teams
utilizing the OSA are experts with the tools, platform,
their code, and are effectively resourced; these teams
need little additional support and are able to fully utilize
the factory. Other teams utilizing the OSA have differing
skill sets within their teams and may lack knowledge of
one or more aspects of the platform. Particularly when
the platform was less mature, it was more common for it
to be utilized by software developers who had never
used a common software factory. While there continues
to be a healthy dialogue between the OSA and its users
regarding training on tooling and new capabilities, some
of these challenges have been solved. NIWC Pacific offers
a “Concierge Team” that enables projects that are lacking
basic skill sets, or are using the factory for the first time,
to onboard and get started with OSA. This team provides
a “concierge-like” service, identifying the software

developer teams’ needs and filling in these gaps. This
Concierge Team has been designed specifically to address
the common problems that novice software developer
teams often encounter when onboarding into a software
factory for the first time. If further support is needed,
OSA also offers quarterly training days, and makes
connections between the software developer teams and
the tool providers so the team can schedule additional
training. Finally, if a software development team finds
that they are in need of specialized software developer
resources, NIWC Pacific has a Magic Team that provides
seasoned software developers to help bridge gaps. The
Magic Team is not designed to be a permanent
augmentation of the software development team, but
can bridge any gaps that may appear for a finite length of
time. Offering these additional services, at an additional
cost, has helped the novice software developer teams to
be able to fully utilize the software factory, even while
they are discovering the gaps in their own experience and
training.

4.7​ TRUST THE PROCESS

A culture of low trust in the benefits of the software
factory, rapid and agile software deployment, and sailor
capable installs can undermine the entire process. The
utilization of an enterprise environment often goes
against a software development team’s innovative
culture, their DIY focus, and is outside their experience.
While the U.S. Navy is learning to effectively and
efficiently provide software platforms “stacks” it is also
learning to effectively utilize them! There are many
things that are happening in the IaaS and PaaS process
that contribute to cyber security, controls that the cyber
security expert on the team may be used to inspecting in
a manual manner. Moving to a continuous accreditation
environment requires a new skill set in utilizing the tools
and a new trust of the outputs. Increasing trust in the
process is a slow moving, but essential step.

The end users of the software, often sailors on ships,
need to learn to trust the process of downloading a new
software update or application on their ship, without the
support of a team of engineers. They are naturally risk
adverse as the consequences are large in the shipboard
environment. Circling back to the analogy of a cell phone
user, the consequences of downloading an application or
update that causes your phone to do an unexpected
restart are not high; if we have to restart our cellphones,
we stand to lose between 1-5 minutes of our time. If a
sailor on a ship downloads an application or update that
causes CANES to shutdown and restart, the
consequences could be catastrophic. These sailors,
moreover, have had no experience or training with the

10​ ​ ICCRTS 2024

software development process and so do not always
know the rigorous testing that applications go through
with digital twins in the collaborative staging
environments. Thus, asking the sailor to trust the
download of an application to a ship, without a team of
engineers standing by requires a significant amount of
trust.

The U.S. Navy and NIWC Pacific are working on increasing
trust in the process through a combination of proving
success and providing high level insights into the process
of developing software for over the air installs. The goal is
for this to be taken as the norm, but today we are still far
from that state.

5​ SUMMARY

The path to creating the Navy’s first over the air software
deployment capability was a long one, and required
determination and ingenuity. Lessons were learned on
each step of that journey, and each milestone achieved
served as a stepping stone toward the next elevated
capability. The journey is far from complete, and in the
coming months and years we look forward to being able
to deploy software to ships on-the-move in any place and
at any time. NIWC Pacific is now looking towards the
future when the Navy personnel aboard a ship will feel
confident, and have the tools they need, to do an
application installation or update on their own, without a
NIWC engineer supporting them. Today’s dynamic and
evolving warfighting environment demands that we keep
pressing forward, building on yesterday’s successes
toward tomorrow’s victory.

REFERENCES

[1]​ Ailes, John W. (Rear Admiral U.S. Navy, Retired)
and LaShomb Susan. “The Software Payload is the
Platform.” U.S. Naval Institute Proceedings. May
2021.
https://www.usni.org/magazines/proceedings/202
1/may/software-payload-platform

[2]​ Department of Defense Software Modernization
Strategy. Department of Defense. 2022.
https://media.defense.gov/2022/Feb/03/2002932
833/-1/-1/1/DEPARTMENT-OF-DEFENSE-SOFTWAR
E-MODERNIZATION-STRATEGY.PDF

[3]​ “SPAWAR Shares Vision for the Information
Warfare Platfrom with Industry.” U.S. Navy Press
Office. 17 July 2017.

[4]​ Galdorisi, George (Capt. U.S. Navy, Retired),
George, Amanda, and Morris, Michael. “Finding
the ‘RITE’ Acquisition Environment for Navy C2
Software.” Proceedings of the Twelfth Annual
Acquisition Research Symposium. Naval Post

Graduate School. 30 April 2015.
https://apps.dtic.mil/sti/tr/pdf/ADA623193.pdf

[5]​ Gamboa, Elisha. “NAVWAR Deploys the Navy’s
First Application Arsenal.” Naval Information
Warfare Center Systems Command (NAVWAR)
Public Affairs. 19 August 2021.
https://www.navy.mil/Press-Office/News-Stories/
Article/2735561/navwar-deploys-the-navys-first-a
pplication-arsenal/

[6]​ PMW 160 Tactical Networks Program Office. PEO
C4I.
https://www.peoc4i.navy.mil/Portals/98/Docume
nts/Tear-Sheets/2023_PMW 160_Tear
Sheet.pdf?ver=NQQlLrVs5P9y46gw81nHJA%3d%3
d

[7]​ “Early Cyber Ready Success: RAISE 2.0 and
Overmatch Software Armory.” Department of
Navy Chief Information Office. 28 July 2023.
https://www.doncio.navy.mil/ContentView.aspx?I
D=16441

[8]​ Barrett, Danelle (Rear Admiral U.S. Navy) “C2C24
Transforms Navy Operations. U.S. Naval Institute
Proceedings. August 2018.
https://www.usni.org/magazines/proceedings/201
8/august/c2c24-transforms-navy-operations

[9]​ McDermott, Kara. “SPAWAR Supports Navy’s
Digital Transformation with ‘Compile to combat in
24 Hours’ Training Series” Department of Navy
Chief Information Office. April-June 2019.
https://www.doncio.navy.mil/mobile/ContentVie
w.aspx?ID=12451&TypeID=21

[10]​Ailes, John W. (Rear Admiral U.S. Navy, Retired)
and LaShomb Susan. “The Software Payload is the
Platform.” U.S. Naval Institute Proceedings. May
2021.
https://www.usni.org/magazines/proceedings/202
1/may/software-payload-platform

[11]​Ailes, John W. (Rear Admiral U.S. Navy, Retired)
and LaShomb Susan. “The Software Payload is the
Platform.” U.S. Naval Institute Proceedings. May
2021.
https://www.usni.org/magazines/proceedings/202
1/may/software-payload-platform

[12]​“Navy Development Security Operations
(DEVSECOPS) Guidance.” Department of the Navy.
https://www.navy.mil/Resources/NAVADMINs/Me
ssage/Article/2460115/navy-development-security
-operations-devsecops-guidance/

[13]​NIWC Pacific Overmatch Sofware Armory. Naval
Information Warfare Center Pacific.
https://www.niwcpacific.navy.mil/Technology/Ove
rmatch-Software-Armory/

[14]​Gast, David W. (Capt. U.S. Navy) and Baptiste,
Philip. “Maritime Tactical Command and Control
program advances with containerization
technology.” CHIPS. 15 March 2024.

ICCRTS 2024​ 11

https://www.doncio.navy.mil/CHIPS/ArticleDetails.
aspx?ID=16689

12​ ​ ICCRTS 2024

	Overmatch Software Armory: Overcoming Barriers to Deployment of Modern Naval C2 Software
	1​INTRODUCTION
	1.1​OWNING THE PROBLEMS
	1.2​IT’S GETTING CLOUDY OUTSIDE!
	1.3​THE RITE BEGINNING

	2​A MODERN SOFTWARE FACTORY IS BORN
	2.1​APPLICATION ARSENAL
	OSA, and CSA before it, relies on Application Arsenal (AA in Figure 1) for transition software within the pipeline. It is heavily leveraged for receipt and for publishing of applications both throughout the Dev side of the environment but on the Ops side as well. Applications are not considered “ready” until they become visible within the Application Arsenal. Once there, they are understood to be ready to be used for that next level. For example, in the development environment, AA is used to transmit a containerized set of code in the Impact level 4 (IL4) development environment into the Agile Core Services (ACS) Communal environment for testing, then into the CANES Collaborative Staging Environment (CSE) for integration.
	Application Arsenal (AA) also provides the “digital environment where approved applications and application updates will be stored and ready for rapid deployment to the fleet.”5 As Figure 1 shows, AA is used to transmit between different aspects of the development pipeline, but also leverages ADNS to transmit the applications to the afloat environment. Similar to a commercial application store like Google Play or the Apple iStore, AA provides an environment where sailors and other users can go to retrieve applications that fit their needs. The sailor on a ship can access AA and download new or newly updated command and control applications in an “on-demand” format. This enables truly automated delivery of capability to the ship, without any additional digital media!
	2.2​ACS COMMUNAL AND CANES CSE
	2.3​RAPID ASSESS AND INCORPORATE SOFTWARE ENGINEERING (RAISE)
	2.4​COMPILE TO COMBAT IN 24 HOURS; YOU BUILT IT, NOW PROVE IT!
	2.5​BIG OL’ APPS
	2.6​OVERMATCH SOFTWARE FACTORY
	2.6.1​Sites
	2.6.2​Fleet Installs
	2.6.3​Security Domains
	2.6.4​Containers Delivered
	2.6.5​User Feedback Events
	2.6.6​Wait Time Avoided
	2.6.7​Vulnerabilities Avoided
	2.6.8​ Deployment Times

	2.7​THE FIRST OFFICIAL OVER THE AIR INSTALL SHIPBOARD!

	3​MANAGING THE OVERMATCH SOFTWARE ARMORY (OSA)
	4​LESSONS LEARNED AND ONGOING CHALLENGES
	4.1​TECHNICAL SOFTWARE DEBT
	4.2​DIY CULTURE
	4.3​ECONOMIES OF SCALE
	4.4​A PLETHORA OF SOFTWARE FACTORIES
	4.5​MEASURING SUCCESS
	4.6​BURDEN SHARING AND TRAINING
	4.7​TRUST THE PROCESS

	5​SUMMARY

