

1

Improving Developer Velocity with Simplicity

OSM: Refactoring Authors:
seanteeling@microsoft.com
Reviewers: add yourself
Date Modified: 06/08/2022
Status: Draft | In Review |
Approved | Abandoned

Foreword
Before continuing with this doc I’d like to make it clear that any critiques of existing code,
architecture designs or patterns are in no way intended to disparage any of the great work the
maintainers have done. Quite the opposite; I believe that foreseeing correct lines of abstraction
in a project of this magnitude, from an early stage is near impossible, and that any work of this
size, particularly developed this quickly and with this many developers, will always benefit from
a large refactoring. Hindsight is always 20/20.

Glossary
Data Objects - objects that only contain data. They do not perform any side effects, or reach
out to other services. They contain little to no business logic1. OSM Objects, K8s Objects, and
Envoy configs would all be an example of a data object. Examples of data objects include

●​ K8s Objects - I refer to types that represent the underlying configuration of a
Kubernetes Object, ie: a Pod, as a K8s object.

●​ OSM Object - I refer to types that are strictly used within the OSM codebase as OSM
objects. Examples of these include Service, Endpoint, and TrafficResource. These do
not come from any underlying API, but are generated within the code, and should map to
internal concepts within OSM, to decouple us from external API’s.

●​ Envoy Configs - I refer to objects/types that are tied to the Envoy API as Envoy
Configs.

Builders - object types that are responsible for generating output that may have substantial
differences based on large numbers of inputs, or on permutations of those inputs.

Client Objects - objects that interact with other external processes via API calls

1 A certificate object `IsExpired()` might check if the expiration time has elapsed. These methods should
be helper methods that answer questions about the data, and nothing else.

https://pkg.go.dev/k8s.io/api/core/v1#Pod
https://pkg.go.dev/github.com/open-service-mesh/osm@v0.0.9/pkg/endpoint#Endpoint
https://pkg.go.dev/github.com/open-service-mesh/osm@v0.0.9/pkg/trafficpolicy#TrafficResource

2

Composer - (where the business logic is) a type, method, or function that may deal with any
number of different types of objects. That is, a composer can call out to a client to get data, feed
that data into a builder, and return the associated data object.

Motivation
Why should OSM refactor now? We are at a pivotal point, evaluating new features like Rate
Limiting, MultiCluster, custom envoy filters, and VM integrations. The current code base lacks
strict boundaries of responsibility among packages, the readability bar is high, and developer
velocity slowed down. By dedicating a small portion of our headcount to the refactoring
proposals described below, I believe we can clear a path for both more robust and quicker
implementations of the aforementioned features, improve developer understanding of our code
base, and promote software engineering best practices.

Goals & Guiding Principles

The number one goal of this doc is to improve developer velocity by creating intuitive layers in
the code with clear lines of responsibility.

We believe we can create the simplest code base by leveraging the following principles:

●​ Everything has exactly 1 responsibility. Data objects, builders, clients, or composers all
do 1 thing. No one type should have more than 1 responsibility from the above.

●​ Complex data objects, particularly those with a myriad of inputs that can result in
different outputs/versions of that data object, should leverage a builder object to create it.

●​ Each package should have little to no concern or influence about what uses it. Each
package is a stand alone entity.

○​ This ties closely to the principle that interfaces should be defined where they are
consumed not by where they are implemented.

●​ Each package should deal with 1 type of input, and 1 type of output.
○​ Packages that contain business logic, should deal with a singular type of

input/output (ie: composers).
○​ In this instance, a “type of input” is a layer, ie: in a rest API, the layers may be: 1)

API objects, 2) “internal objects”, 3) DAO (data access objects). This decouples
the API from business logic, and from database.

○​ Similarly, OSM has K8s, Internal, and Envoy. Any business logic should apply
strictly on the Internal layer, meaning a composer has K8s/Envoy abstracted
away from them.

3

●​ Each package should map to a real-world construct. A good litmus test is that each

package is easy to describe in a single sentence.
●​ If a method does not access any fields of its instance, it should be a function.

○​ This makes it simpler to determine the set of inputs to that function, and deeper
function calls down the stack.

●​ Prefer unexported fields over exported fields.
●​ Avoid passing client objects as params, except when leveraging dependency injection.

Instead, embed the client object into a separate client object. This allows us to use
interfaces to abstract the client.

○​ For client objects that are themselves fields on a struct, this makes it much easier
to see where the client object is being used, through code navigation.

●​ Avoid passing a structs fields as parameters to downstream methods on that struct. This
makes it easier for code navigation to tell you where each field is used.

●​ Avoid deeply nested function calls. Code should not branch out into millions of paths.
●​ Accept interfaces, return structs.

○​ Assume your caller is smart. If they want the interface they can use that, but
returning a struct provides more power.

●​ Prefer tests on exported functions/methods.
○​ Unit testing internal package methods and functions belies too much importance

on implementation details. Unit testing should test the inputs/outputs of the
package.

●​ YAGNI - “You ain’t gonna need it”
●​ WET - “Write everything twice”

○​ Similar to Rob Pike’s “A little copying is better than a little dependency”
●​ Prefer composition over inheritance, and think of code as layers of composition.

○​ For instance, the MeshCatalog should not know anything about K8s. But it does
need to call k8s clients. There may be a kubernetes client, that deals strictly with
k8s objects, an OSM client, that converts from internal OSM calls, to the k8s
client (this layer has OSM inputs, translates to k8s, and returns OSM outputs),
and finally the mesh catalog, which may contain the business logic on the
Internal types.

●​ Other interface best practices
●​ Other golang best practices

Happy Side Effects

While not explicit goals, we call out a few happy side effects of the proposed changes

●​ One big step towards letting OSM run outside of K8s.

https://medium.com/applike/how-to-using-composition-over-inheritance-6681ed1b78e4
https://docs.google.com/document/d/1FOJcHCLIo-H8GCh13gIIf8atjdJf3s4ml-_QCWYwwp0/edit#heading=h.w3bvyt9k5nfw
https://go-proverbs.github.io/

4

○​ By defining clear cut API’s and removing existing leaky abstractions, we can

allow for a single interface that users can define to integrate with a control plane
and connect on-prem, or non-k8s clusters to their OSM mesh.

●​ Decoupled objects allow us to “think” in terms of OSM, while translation/builder objects
reduce the burden of code when API’s change.

●​ Increased performance
○​ Due to the lack of builders, there’s a lot of recomputation, particularly with nested

for loops. By setting all of the inputs prior to building, we can optimize code to
reduce this, improving both computational complexity, and intuitive (human)
complexity.

●​ Improved Testing coverage
○​ We will be able to remove substantial amounts of code. We will not consider this

a success unless overall code coverage is increased.

Current Shortcomings & Proposed Solutions

The proposed summary of changes is as follows, with further details and motivation provided in
the paragraphs below:

1.​ Methods in MeshCatalog and the xDS NewResponse’s, will become composers, as
defined above.

a.​ This means they will not be responsible for building objects.
b.​ They will instead, leverage builders, and provide all input up front to the builders.

See the appendix below for an example
2.​ Builders will be used for both internal OSM objects, and envoy configs. They will never

be passed any client objects.
3.​ OSM objects will become more normalized, as they are currently denormalized to more

closely represent the envoy configs.
a.​ Builders should save input as fields on their struct, and not perform any

translation logic until `Build()` is called.
b.​ However, as mentioned above, a package should not need to know how it is

called. See the appendix below for an example of how this can be reduced.
c.​ This will greatly reduce the amount of translation logic performed, as we currently

have complex building in both MeshCatalog and xDS config packages.

Testing Plan
Maintain the same set of unit and e2e tests, by doing this piecemeal and incrementally.

Appendix

5

Further Motivation, and Examples of Inconsistency

●​ MeshCatalog acts as both a builder for OSM objects (traffic policy), and a client, with
code switching between queries and constructing these structs.

○​ For example, try tracing the calls from GetInboundMeshTrafficPolicy, and notice
how we switch between constructing the objects, and issuing queries.

○​ Some of these structs are also built outside of the MeshCatalog.
○​ By leveraging builders we can clearly see what the inputs to a specific builder,

such as an envoy config, are without having to drill too far down the “mental
stack”

●​ The traffic policy structs are an attempt to decouple the K8s API from the Envoy API.
While this is a great idea, the actual implementation is loosely coupled with the Envoy
API, and suffers from the following:

○​ These structs contain fields like `name` which are specific to envoy, and are
denormalized in a way that more closely resembles the envoy configs, instead of
the internal/intuitive OSM representation.

○​ They don’t concretely map to the envoy API, so there is a lot of business logic to
translate to these structs, and a lot of logic to translate from these to Envoy
configs.

○​ We can simplify this by keeping these constructs much more simple. See the
appendix below for an example alternative.

○​ Builders should have fewer code paths, as they can make smarter decisions on
building since they have all the inputs at build time

●​ Similarly, the Envoy xDS response classes sometimes have 3 responsibilities: 1) building
the OSM objects, 2) issuing queries, 3) Building the envoy configs. This should boil down
to 1.

○​ We will separate the xDS response classes from the builder logic. Each Envoy
config will maintain a new builder struct, that is passed (data-only) input and
knows how to generate the resulting Envoy configs, while the response handler is
responsible for querying and feeding the resulting data to the builders.

●​ We do heavy lifting twice, by constructing denormalized data objects that are somewhat
similar to envoy configs, but don’t map closely to our internal representation.

○​ We will normalize the OSM internal objects, such that the envoy config builders
are responsible for denormalization.

○​ This will roughly halve the complexity across this set of code, while actually
further decoupling these 2 types. See the appendix below for examples.

NewResponse Builders

See the current implementation for comparison

https://github.com/openservicemesh/osm/blob/main/pkg/catalog/inbound_traffic_policies.go#L27
https://github.com/openservicemesh/osm/blob/main/pkg/envoy/rds/response.go#L70
https://github.com/openservicemesh/osm/blob/main/pkg/envoy/lds/response.go#L22

6

func NewResponse(meshCatalog catalog.MeshCataloger, proxy *envoy.Proxy, _

*xds_discovery.DiscoveryRequest, cfg configurator.Configurator, _

*certificate.Manager, proxyRegistry *registry.ProxyRegistry) ([]types.Resource, error)

{

 lb := newListenerBuilder(proxy.Identity)

 if featureflags := cfg.GetFeatureFlags(); featureflags.EnableWASMStats {

 lb.SetStatsHeaders(proxy.StatsHeaders())

 }

 svcList, err := proxyRegistry.ListProxyServices(proxy)

 if err != nil {

 return nil, err

 }

 lb.SetInboundServices(svcList)

 lb.SetEgressPolicy(meshCatalog.GetEgressTrafficPolicy())

 lb.SetOutboundEgressPolicy(meshCatalog.GetOutboundEgressTrafficPolicy())

 /*

 Set other inputs here

 */

 if pod, err := envoy.GetPodFromCertificate(proxy.GetCertificateCommonName(),

meshCatalog.GetKubeController()); err != nil {

 log.Warn().Str("proxy", proxy.String()).Msgf("Could not find pod for connecting

proxy, no metadata was recorded")

 } else {

 lb.SetMetricsEnabled(k8s.IsMetricsEnabled(pod))

 }

 return lb.Build()

}

Decoupled TrafficPolicy Objects

TrafficPolicy objects currently contain too much “knowledge” about the envoy config. They are a
valiant attempt at making our objects easier to map to an envoy config, but ultimately end up

7

leaving envoy config logic in multiple places, and us performing similar mappings more than
once.

Check out the code below for how we can simplify our objects.

Note that the below doesn’t use a builder, so can be further improved, although it does pull up
all of the querying into the top level method, leveraging functions below.

// GetInboundMeshTrafficPolicy returns the inbound mesh traffic policy for the given

upstream identity and services

func (mc *MeshCatalog) GetInboundRules(upstreamIdentity identity.ServiceIdentity)

[]*trafficpolicy.InboundRule {

 destinationFilter :=

smi.WithTrafficTargetDestination(upstreamIdentity.ToK8sServiceAccount())

 trafficTargets := mc.meshSpec.ListTrafficTargets(destinationFilter)

 // Create a map of maps to speed up lookups.

 routePolicies := make(map[string]map[string]trafficpolicy.HTTPRouteMatch)

 for _, trafficSpecs := range mc.meshSpec.ListHTTPTrafficSpecs() {

 specKey := getTrafficSpecName(smi.HTTPRouteGroupKind, trafficSpecs.Namespace,

trafficSpecs.Name)

 routePolicies[specKey] = make(map[string]trafficpolicy.HTTPRouteMatch)

 for _, trafficSpecsMatches := range trafficSpecs.Spec.Matches {

 serviceRoute := trafficpolicy.HTTPRouteMatch{

 Path: trafficSpecsMatches.PathRegex,

 PathMatchType: trafficpolicy.PathMatchRegex,

 Methods: trafficSpecsMatches.Methods,

 Headers: trafficSpecsMatches.Headers,

 }

 // When pathRegex or/and methods are not defined, they will be wildcarded

 if serviceRoute.Path == "" {

 serviceRoute.Path = constants.RegexMatchAll

 }

 if len(serviceRoute.Methods) == 0 {

 serviceRoute.Methods = []string{constants.WildcardHTTPMethod}

 }

 routePolicies[specKey][trafficSpecsMatches.Name] = serviceRoute

 }

 }

8

 // From each TrafficTarget and HTTPRouteGroup configuration associated with this

service, build routes for it.

 var routingRules []*trafficpolicy.InboundRule

 for _, trafficTarget := range trafficTargets {

 rules := getRoutingRulesFromTrafficTarget(trafficTarget, routePolicies)

 // Multiple TrafficTarget objects can reference the same route, in which case

such routes

 // need to be merged to create a single route that includes all the downstream

client identities

 // this route is authorized for.

 routingRules = trafficpolicy.MergeRules(routingRules, rules)

 }

 return routingRules

}

func getRoutingRulesFromTrafficTarget(trafficTarget *access.TrafficTarget,

routePolicies map[string]map[string]trafficpolicy.HTTPRouteMatch)

[]*trafficpolicy.InboundRule {

 // Compute the allowed downstream service identities for the given TrafficTarget

object

 allowedDownstreamIdentities := mapset.NewSet()

 for _, source := range trafficTarget.Spec.Sources {

allowedDownstreamIdentities.Add(trafficTargetIdentityToSvcAccount(source).ToServiceIde

ntity())

 }

 var routingRules []*trafficpolicy.InboundRule

 for _, rule := range trafficTarget.Spec.Rules {

 trafficSpecName := getTrafficSpecName(smi.HTTPRouteGroupKind,

trafficTarget.Namespace, rule.Name)

 // TODO(steeling): I think there is a bug, where the SMI spec says if no

matches are specified, then all should be applied.

 for _, match := range rule.Matches {

 if matchedRoute, exists := routePolicies[trafficSpecName][match]; exists {

 rule := &trafficpolicy.InboundRule{

 HTTPRouteMatch: matchedRoute,

9

 AllowedServiceIdentities: allowedDownstreamIdentities,

 }

 routingRules = append(routingRules, rule)

 } else {

 log.Debug().Msgf("No matching trafficpolicy.HTTPRoute found for match

name %s in Traffic Spec %s (in namespace %s)", match, trafficSpecName,

trafficTarget.Namespace)

 }

 }

 }

 return routingRules

}

func getTrafficSpecName(trafficSpecKind string, trafficSpecNamespace string,

trafficSpecName string) string {

 return fmt.Sprintf("%s/%s/%s", trafficSpecKind, trafficSpecNamespace,

trafficSpecName)

}

The current implementation is provided below for comparison:

// GetInboundMeshTrafficPolicy returns the inbound mesh traffic policy for the given

upstream identity and services

func (mc *MeshCatalog) GetInboundMeshTrafficPolicy(upstreamIdentity

identity.ServiceIdentity, upstreamServices []service.MeshService)

*trafficpolicy.InboundMeshTrafficPolicy {

 var trafficMatches []*trafficpolicy.TrafficMatch

 var clusterConfigs []*trafficpolicy.MeshClusterConfig

 var trafficTargets []*access.TrafficTarget

 routeConfigPerPort := make(map[int][]*trafficpolicy.InboundTrafficPolicy)

 permissiveMode := mc.configurator.IsPermissiveTrafficPolicyMode()

 if !permissiveMode {

 // Pre-computing the list of TrafficTarget optimizes to avoid repeated

10

 // cache lookups for each upstream service.

 destinationFilter :=

smi.WithTrafficTargetDestination(upstreamIdentity.ToK8sServiceAccount())

 trafficTargets = mc.meshSpec.ListTrafficTargets(destinationFilter)

 }

 // A policy (traffic match, route, cluster) must be built for each upstream

service. This

 // includes apex/root services associated with the given upstream service.

 allUpstreamServices := mc.getUpstreamServicesIncludeApex(upstreamServices)

 // Build configurations per upstream service

 for _, upstreamSvc := range allUpstreamServices {

 // ---

 // Create local cluster configs for this upstram service

 clusterConfigForSvc := &trafficpolicy.MeshClusterConfig{

 Name: upstreamSvc.EnvoyLocalClusterName(),

 Service: upstreamSvc,

 Address: constants.LocalhostIPAddress,

 Port: uint32(upstreamSvc.TargetPort),

 }

 clusterConfigs = append(clusterConfigs, clusterConfigForSvc)

 // ---

 // Create a TrafficMatch for this upstream servic.

 // The TrafficMatch will be used by LDS to program a filter chain match

 // for this upstream service on the upstream server to accept inbound

 // traffic.

 trafficMatchForUpstreamSvc := &trafficpolicy.TrafficMatch{

 Name: upstreamSvc.InboundTrafficMatchName(),

 DestinationPort: int(upstreamSvc.TargetPort),

 DestinationProtocol: upstreamSvc.Protocol,

 }

 trafficMatches = append(trafficMatches, trafficMatchForUpstreamSvc)

 // Build the HTTP route configs for this service and port combination.

 // If the port's protocol corresponds to TCP, we can skip this step

 if upstreamSvc.Protocol == constants.ProtocolTCP || upstreamSvc.Protocol ==

constants.ProtocolTCPServerFirst {

11

 continue

 }

 // ---

 // Build the HTTP route configs per port

 // Each upstream service accepts traffic from downstreams on a list of allowed

routes.

 // The routes are derived from SMI TrafficTarget and TrafficSplit policies in

SMI mode,

 // and are wildcarded in permissive mode. The downstreams that can access this

upstream

 // on the configured routes is also determined based on the traffic policy

mode.

 inboundTrafficPolicies := mc.getInboundTrafficPoliciesForUpstream(upstreamSvc,

permissiveMode, trafficTargets)

 routeConfigPerPort[int(upstreamSvc.TargetPort)] =

append(routeConfigPerPort[int(upstreamSvc.TargetPort)], inboundTrafficPolicies)

 }

 return &trafficpolicy.InboundMeshTrafficPolicy{

 TrafficMatches: trafficMatches,

 ClustersConfigs: clusterConfigs,

 HTTPRouteConfigsPerPort: routeConfigPerPort,

 }

}

func (mc *MeshCatalog) getInboundTrafficPoliciesForUpstream(upstreamSvc

service.MeshService, permissiveMode bool, trafficTargets []*access.TrafficTarget)

*trafficpolicy.InboundTrafficPolicy {

 var inboundPolicyForUpstreamSvc *trafficpolicy.InboundTrafficPolicy

 if permissiveMode {

 // Add a wildcard HTTP route that allows any downstream client to access the

upstream service

 hostnames := k8s.GetHostnamesForService(upstreamSvc, true /* local namespace

FQDN should always be allowed for inbound routes*/)

 inboundPolicyForUpstreamSvc =

trafficpolicy.NewInboundTrafficPolicy(upstreamSvc.FQDN(), hostnames)

 localCluster := service.WeightedCluster{

 ClusterName: service.ClusterName(upstreamSvc.EnvoyLocalClusterName()),

12

 Weight: constants.ClusterWeightAcceptAll,

 }

inboundPolicyForUpstreamSvc.AddRule(*trafficpolicy.NewRouteWeightedCluster(trafficpoli

cy.WildCardRouteMatch, []service.WeightedCluster{localCluster}),

identity.WildcardServiceIdentity)

 } else {

 // Build the HTTP routes from SMI TrafficTarget and HTTPRouteGroup

configurations

 inboundPolicyForUpstreamSvc =

mc.buildInboundHTTPPolicyFromTrafficTarget(upstreamSvc, trafficTargets)

 }

 return inboundPolicyForUpstreamSvc

}

func (mc *MeshCatalog) buildInboundHTTPPolicyFromTrafficTarget(upstreamSvc

service.MeshService, trafficTargets []*access.TrafficTarget)

*trafficpolicy.InboundTrafficPolicy {

 hostnames := k8s.GetHostnamesForService(upstreamSvc, true /* local namespace FQDN

should always be allowed for inbound routes*/)

 inboundPolicy := trafficpolicy.NewInboundTrafficPolicy(upstreamSvc.FQDN(),

hostnames)

 localCluster := service.WeightedCluster{

 ClusterName: service.ClusterName(upstreamSvc.EnvoyLocalClusterName()),

 Weight: constants.ClusterWeightAcceptAll,

 }

 var routingRules []*trafficpolicy.Rule

 // From each TrafficTarget and HTTPRouteGroup configuration associated with this

service, build routes for it.

 for _, trafficTarget := range trafficTargets {

 rules := mc.getRoutingRulesFromTrafficTarget(*trafficTarget, localCluster)

 // Multiple TrafficTarget objects can reference the same route, in which case

such routes

 // need to be merged to create a single route that includes all the downstream

client identities

 // this route is authorized for.

 routingRules = trafficpolicy.MergeRules(routingRules, rules)

13

 }

 inboundPolicy.Rules = routingRules

 return inboundPolicy

}

func (mc *MeshCatalog) getRoutingRulesFromTrafficTarget(trafficTarget

access.TrafficTarget, routingCluster service.WeightedCluster) []*trafficpolicy.Rule {

 // Compute the HTTP route matches associated with the given TrafficTarget object

 httpRouteMatches, err := mc.routesFromRules(trafficTarget.Spec.Rules,

trafficTarget.Namespace)

 if err != nil {

 log.Error().Err(err).Str(errcode.Kind,

errcode.GetErrCodeWithMetric(errcode.ErrFetchingSMIHTTPRouteGroupForTrafficTarget)).

 Msgf("Error finding route matches from TrafficTarget %s in namespace %s",

trafficTarget.Name, trafficTarget.Namespace)

 return nil

 }

 // Compute the allowed downstream service identities for the given TrafficTarget

object

 allowedDownstreamIdentities := mapset.NewSet()

 for _, source := range trafficTarget.Spec.Sources {

 sourceSvcIdentity :=

trafficTargetIdentityToSvcAccount(source).ToServiceIdentity()

 allowedDownstreamIdentities.Add(sourceSvcIdentity)

 }

 var routingRules []*trafficpolicy.Rule

 for _, httpRouteMatch := range httpRouteMatches {

 rule := &trafficpolicy.Rule{

 Route:

*trafficpolicy.NewRouteWeightedCluster(httpRouteMatch,

[]service.WeightedCluster{routingCluster}),

 AllowedServiceIdentities: allowedDownstreamIdentities,

 }

 routingRules = append(routingRules, rule)

 }

14

 return routingRules

}

// routesFromRules takes a set of traffic target rules and the namespace of the

traffic target and returns a list of

// http route matches (trafficpolicy.HTTPRouteMatch)

func (mc *MeshCatalog) routesFromRules(rules []access.TrafficTargetRule,

trafficTargetNamespace string) ([]trafficpolicy.HTTPRouteMatch, error) {

 var routes []trafficpolicy.HTTPRouteMatch

 specMatchRoute, err := mc.getHTTPPathsPerRoute() // returns

map[traffic_spec_name]map[match_name]trafficpolicy.HTTPRoute

 if err != nil {

 return nil, err

 }

 if len(specMatchRoute) == 0 {

 log.Trace().Msg("No elements in map[traffic_spec_name]map[match

name]trafficpolicyHTTPRoute")

 return routes, nil

 }

 for _, rule := range rules {

 trafficSpecName := mc.getTrafficSpecName(smi.HTTPRouteGroupKind,

trafficTargetNamespace, rule.Name)

 for _, match := range rule.Matches {

 matchedRoute, found :=

specMatchRoute[trafficSpecName][trafficpolicy.TrafficSpecMatchName(match)]

 if found {

 routes = append(routes, matchedRoute)

 } else {

 log.Debug().Msgf("No matching trafficpolicy.HTTPRoute found for match

name %s in Traffic Spec %s (in namespace %s)", match, trafficSpecName,

trafficTargetNamespace)

 }

 }

 }

 return routes, nil

15

}

func (mc *MeshCatalog) getHTTPPathsPerRoute()

(map[trafficpolicy.TrafficSpecName]map[trafficpolicy.TrafficSpecMatchName]trafficpolic

y.HTTPRouteMatch, error) {

 routePolicies :=

make(map[trafficpolicy.TrafficSpecName]map[trafficpolicy.TrafficSpecMatchName]trafficp

olicy.HTTPRouteMatch)

 for _, trafficSpecs := range mc.meshSpec.ListHTTPTrafficSpecs() {

 log.Debug().Msgf("Discovered TrafficSpec resource: %s/%s",

trafficSpecs.Namespace, trafficSpecs.Name)

 if trafficSpecs.Spec.Matches == nil {

 log.Error().Str(errcode.Kind,

errcode.GetErrCodeWithMetric(errcode.ErrSMIHTTPRouteGroupNoMatch)).

 Msgf("TrafficSpec %s/%s has no matches in route; Skipping...",

trafficSpecs.Namespace, trafficSpecs.Name)

 continue

 }

 // since this method gets only specs related to HTTPRouteGroups added

HTTPTraffic to the specKey by default

 specKey := mc.getTrafficSpecName(smi.HTTPRouteGroupKind,

trafficSpecs.Namespace, trafficSpecs.Name)

 routePolicies[specKey] =

make(map[trafficpolicy.TrafficSpecMatchName]trafficpolicy.HTTPRouteMatch)

 for _, trafficSpecsMatches := range trafficSpecs.Spec.Matches {

 serviceRoute := trafficpolicy.HTTPRouteMatch{

 Path: trafficSpecsMatches.PathRegex,

 PathMatchType: trafficpolicy.PathMatchRegex,

 Methods: trafficSpecsMatches.Methods,

 Headers: trafficSpecsMatches.Headers,

 }

 // When pathRegex or/and methods are not defined, they will be wildcarded

 if serviceRoute.Path == "" {

 serviceRoute.Path = constants.RegexMatchAll

 }

 if len(serviceRoute.Methods) == 0 {

 serviceRoute.Methods = []string{constants.WildcardHTTPMethod}

16

 }

routePolicies[specKey][trafficpolicy.TrafficSpecMatchName(trafficSpecsMatches.Name)] =

serviceRoute

 }

 }

 log.Debug().Msgf("Constructed HTTP path routes: %+v", routePolicies)

 return routePolicies, nil

}

func (mc *MeshCatalog) getTrafficSpecName(trafficSpecKind string, trafficSpecNamespace

string, trafficSpecName string) trafficpolicy.TrafficSpecName {

 specKey := fmt.Sprintf("%s/%s/%s", trafficSpecKind, trafficSpecNamespace,

trafficSpecName)

 return trafficpolicy.TrafficSpecName(specKey)

}

// getUpstreamServicesIncludeApex returns a list of all upstream services associated

with the given list

// of services. An upstream service is associated with another service if it is a

backend for an apex/root service

// in a TrafficSplit config. This function returns a list consisting of the given

upstream services and all apex

// services associated with each of those services.

func (mc *MeshCatalog) getUpstreamServicesIncludeApex(upstreamServices

[]service.MeshService) []service.MeshService {

 svcSet := mapset.NewSet()

 var allServices []service.MeshService

 // Each service could be a backend in a traffic split config. Construct a list

 // of all possible services the given list of services is associated with.

 for _, svc := range upstreamServices {

 if newlyAdded := svcSet.Add(svc); newlyAdded {

 allServices = append(allServices, svc)

 }

 for _, split := range

mc.meshSpec.ListTrafficSplits(smi.WithTrafficSplitBackendService(svc)) {

17

 svcName := k8s.GetServiceFromHostname(mc.kubeController,

split.Spec.Service)

 subdomain := k8s.GetSubdomainFromHostname(mc.kubeController,

split.Spec.Service)

 apexMeshService := service.MeshService{

 Namespace: svc.Namespace,

 Name: svcName,

 Port: svc.Port,

 TargetPort: svc.TargetPort,

 Protocol: svc.Protocol,

 }

 if subdomain != "" {

 apexMeshService.Name = fmt.Sprintf("%s.%s", subdomain, svcName)

 }

 if newlyAdded := svcSet.Add(apexMeshService); newlyAdded {

 allServices = append(allServices, apexMeshService)

 }

 }

 }

 return allServices

}

	OSM: Refactoring
	Foreword
	Glossary
	Motivation
	Goals & Guiding Principles
	Happy Side Effects
	Current Shortcomings & Proposed Solutions

	Testing Plan
	Appendix
	Further Motivation, and Examples of Inconsistency
	NewResponse Builders
	Decoupled TrafficPolicy Objects

