Name:	Per:
-------	------

SECONDARY MATH I // MODULE 5
SYSTEMS OF EQUATIONS AND INEQUALITIES - 5.3

5. 3 Some of One, None of the Other

A Solidify Understanding Task

Carlos and Clarita are comparing strategies for writing equations of the boundary lines for the "Pet Sitter" constraints. They are discussing their work on the *space* constraint.

 Space: Cat pens will require 6 ft² of space, while dog runs require 24 ft². Carlos and Clarita have up to 360 ft² available in the storage shed for pens and runs, while still leaving enough room to move around the cages.

Carlos' Method: "I made a table. If I don't have any cats, then I have room for 15 dogs. If I use some of the space for 4 cats, then I can have 14 dogs. With 8 cats, I have room for 13 dogs. For each additional dog run that I don't buy, I can buy 4 more cat pens. From my table I know the y-intercept of my line is 15 and the slope is $-\frac{1}{4}$, so my equation is $y = -\frac{1}{4}x + 15$."

Clarita's Method: "I let x represent the number of cats, and y the number of dogs. Since cat pens require 6 ft², 6x represents the space used by cats. Since dog runs require 24 ft², 24y represents the amount of space used by dogs. So my equation is 6x + 24y = 360."

- Since both equations represent the same information, they must be equivalent to each other.
 - Show the steps you could use to turn Clarita's equation into Carlos' equation.
 Explain why you can do each step.
 - Show the steps you could use to turn Carlos' equation into Clarita's. Explain why
 you can do each step.

2.	Use both Carlos' and Clarita's methods to write the equation of the boundary line for the
	start-up costs constraint.

 Start-up Costs: Carlos and Clarita plan to invest much of the \$1280 they earned from their last business venture to purchase cat pens and dog runs. It will cost \$32 for each cat pen and \$80 for each dog run.

- 3. Show the steps you could use to turn Clarita's *start-up costs* equation into Carlos' equation. Explain why you can do each step.
- 4. Show the steps you could use to turn Carlos' start-up costs equation into Clarita's. Explain why you can do each step.

In addition to writing an equation of the boundary lines, Carlos and Clarita need to graph their lines on a coordinate grid.

Carlos' equations are written in **slope-intercept form**. Clarita's equations are written in **standard form**. Both forms are ways of writing **linear equations**.

Both Carlos and Clarita know they only need to plot two points in order to graph a line.

5. Carlos' strategy: How might Carlos use his slope-intercept form, $y = -\frac{1}{4}x + 15$, to plot two points on his line?

Clarita's strategy: How might Clarita use her standard form, 6x + 24y = 360, to plot two
points on her line? (Clarita is really clever, so she looks for the two easiest points she can
find.)

READY, SET, GO!

Name

Period

Date

READY

Topic: Determining points that are solutions to a system of equations.

Three points are given. Each point is a solution to at least one of the equations. Just one point satisfies <u>both</u> equations. (This is the solution to the system!) Find and justify which point is a solution to both equations. Also justify which points are not solutions.

1.
$$\begin{cases} y = 2x - 3 \\ y = -x + 3 \end{cases}$$

- a. (-2,5)
- b. (2,1)
- c. (4,5)

2.
$$\begin{cases} y = 3x + 3 \\ y = -x + 3 \end{cases}$$

- a. (-1,0)
- b. (6,-3)
- c. (0,3)

3.
$$\begin{cases} y = 2 \\ y = -4x - 6 \end{cases}$$

- a. (7,2)
- b. (2,-14)
- c. (-2,2)

4.
$$\begin{cases} y = 2x + 4 \\ x + y = -5 \end{cases}$$

- a. (1,6)
- b. (-3,-2)
- c. (-3,2)

SET

Topic: Graphing linear equations written in standard form

Graph the following equations by finding the x-intercept and the y-intercept.

5.
$$5x - 2y = 10$$

x-intercept:

y-intercept:

6.
$$3x - 6y = 24$$

x-intercept:

y-intercept:

7.
$$6x + 2y = 18$$

x-intercept:

y-intercept:

8.
$$-2x + 7y = -14$$

x-intercept: y-intercept:

GO

Topic: Adding and multiplying fractions

9.
$$\frac{3}{4} + \frac{1}{8}$$

10.
$$\frac{3}{5} + \frac{7}{10}$$

11.
$$\frac{2}{3} + \frac{1}{4}$$

9.
$$\frac{3}{4} + \frac{1}{8}$$
 10. $\frac{3}{5} + \frac{7}{10}$ 11. $\frac{2}{3} + \frac{1}{4}$ 12. $\frac{4}{7} + \frac{8}{21}$

13.
$$\frac{3}{4} \times \frac{2}{9}$$

14.
$$\frac{4}{7} \times \frac{7}{10}$$

15.
$$\frac{5}{4} \times \frac{2}{9}$$

16.
$$\frac{3}{7} \times \frac{8}{21}$$