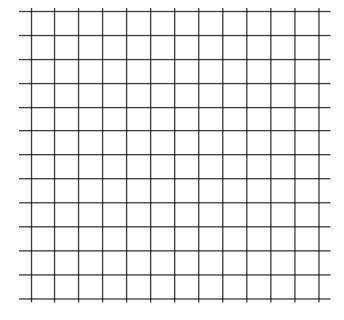
6.6 OPERATIONS WITH ALGEBRAIC VECTORS IN R^2

Defining a vector in R^2 .

A second way of writing $\overrightarrow{OP} = (a, b)$ is with the use of the unit vector \vec{i} and \vec{j} .

The vectors $\vec{i} = (1, 0)$ and $\vec{j} = (0, 1)$ have magnitude 1 and lie along the positive x- and y-axes, respectively, as shown on the graph.



Ex. 1 Write each in term of its components.

a)
$$\vec{OP} = (4, 5)$$

b) Vector \overrightarrow{OQ} with Q(-3,0)

c) with points A(-3,2) and B(2,-4)

Representations of Vectors in \mathbb{R}^2

The position vector \overrightarrow{OP} can be represented as either $\overrightarrow{OP} = (a, b)$ or $\overrightarrow{OP} = a\overrightarrow{i} + b\overrightarrow{j}$, where O(0, 0) is the origin, P(a, b) is any point on the plane, and \vec{i} and \vec{j} are the standard unit vectors for \vec{R}^2 . Standard unit vectors \vec{i} and \vec{j} , are unit vectors that lie along the x- and y-axes respectively, so $\vec{i} = (1, 0)$ and $\vec{j} = (0, 1)$. Every vector in R^2 , given in terms of its components, can also be written uniquely in terms of \vec{i} and \vec{j} . The unit vectors \vec{i} and \vec{j} are also called the standard basis vectors in R^2 .

Ex. 2 Given
$$\vec{x} = 2\vec{i} - 3\vec{j}$$
 and $\vec{y} = -3\vec{j}$ determine:

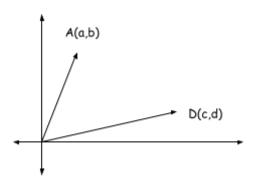
a)
$$|\vec{x}|$$

b)
$$|\overrightarrow{y}|$$

c)
$$\overrightarrow{x} + \overrightarrow{v}$$

Addition of Two Vectors Using Component Form

Determine the sum $\overrightarrow{OA} = (a, b)$ and $\overrightarrow{OD} = (c, d)$, where A and D are any two points in R^2 .



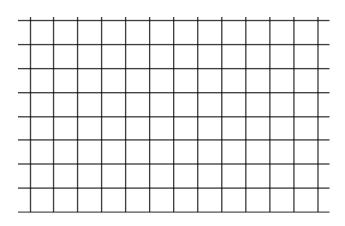
Therefore
$$\overrightarrow{OA} + \overrightarrow{OD} =$$

And
$$\overrightarrow{OA} - \overrightarrow{OD} =$$

Scalar Multiplication of Vectors Using Components

Given $\overrightarrow{OP} = (a, b)$ determine the coordinates of \overrightarrow{mOP} where m is a real number.

Ex.3 Given $\vec{a} = \vec{OA} = (1, 3)$ and $\vec{b} = \vec{OB} = (4, -2)$, determine the components of $\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$, and illustrate each of these vectors on the graph.



Vectors in R^2 **Defined by Two Points**

Ex. 4 Given points A(1, 4) and B(4, -3) determine \overrightarrow{AB} and $|\overrightarrow{AB}|$.

In general, given points $A(x_1, y_1)$ and $B(x_2, y_2)$ determine \overrightarrow{AB} and $|\overrightarrow{AB}|$.

Position Vectors and Magnitudes in R^2

If $A(x_1, y_1)$ and $B(x_2, y_2)$ are two points, then the vector $\overrightarrow{AB} = (x_2 - x_1, y_2 - y_1)$ is its related position vector \overrightarrow{OP} and $|\overrightarrow{AB}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

Ex. 5 For the vectors $\vec{x} = 2\vec{i} - 3\vec{j}$ and $\vec{y} = -4\vec{i} - 3\vec{j}$, determine $|\vec{x} + \vec{y}|$ and $|\vec{x} - \vec{y}|$.

Ex. 6 A(-3,7), B(5,22), and C(8,18) are three points in R^2 .

- a) Calculate the value of $|\overrightarrow{AB}| + |\overrightarrow{BC}| + |\overrightarrow{CA}|$, the perimeter of triangle ABC. b) Calculate the value of $|\overrightarrow{AB}| + |\overrightarrow{BC}| + |\overrightarrow{CA}|$,

Ex. 7 If $\vec{a} = (5, -6)$, $\vec{b} = (-7, 3)$, and $\vec{c} = (2, 8)$, calculate $|\vec{a} - 3\vec{b} - \frac{1}{2}\vec{c}|$