ЛЕКЦИЯ №11

РАЗДЕЛ 3. ТЕХНИЧЕСКАЯ ЭКСПЛУАТАЦИЯ ЭЛЕМЕНТОВ ЗДАНИЙ

Тема 3.2. Аппаратура, приборы и методы контроля состояния и эксплуатационных свойств материалов и конструкций при обследовании зданий

План:

1. Инструментальные методы контроля эксплуатационных качеств материалов и конструкций (механические, электрические, геодезические, оптические, ультразвуковые).

1. Инструментальные методы контроля эксплуатационных качеств материалов и конструкций

конструкций Инструментальное обследование строительных ЭТО обследование, которое проводится для получения данных о техническом состоянии объектов недвижимого имущества. При ЭТОМ выявляются конструкциях, деформации В несущих определяется ИХ прочность, устанавливается наличие трещин.

Инструментальное обследование необходимо проводить для конструкций, у которых явно выражены нарушения, установленные при визуальном обследовании. Инструментальные обследования могут проводиться различными способами, которые помогут дать правдивую оценку техническому состоянию сооружения.

Методы инструментального обследования Инструментальное обследование проводится с помощью специального оборудования. Существует два метода обследования:

- Неразрушительный при таком способе изучается технические параметры зданий без разрушительных работ;
- С частичным разрушением такой способ обследования используется более часто, так как он позволяет точнее установить слабые места в помещении. При его применении происходит анализ конструкции изнутри.

Инструментальное обследование включает:

- определение объемной деформации сооружения. Такие работы проводятся с помощью нивелира и теодолитной съемки и позволяют определить степень деформации;
- изучение прогибов и смещений в несущей конструкции;
- установление показателей прочности и влажности бетона и раствора. Чаще всего при таких работах используется ультразвуковое обследование;

- обнаружение скрытых деформирующих процессов;
- изучение глубины и величины трещин;
- изучение параметров воздухопроницания, звукопроводимости и теплоизоляции;
- определение наличия вибраций;
- установление степени усадки фундамента.

Целью инструментального обследования зданий является получение количественных данных о состоянии несущих и ограждающих конструкций: деформациях, прочности, трещинообразовании и влажности.

Инструментальному обследованию подлежат конструкции с явно выраженными дефектами и разрушениями, обнаруженными при визуальном осмотре, либо конструкции, определяемые выборочно по условию: не менее 10% и не менее трёх штук в температурном блоке.

Методы инструментального обследования и используемая для этого аппаратура приводятся ниже в таблице.

№ п/п	Исследуемый параметр	Метод испытания или измерения	Инструменты, приборы и оборудование, используемые при инструментальном обследовании
1	Объемная деформация здания	Нивелирование, теодолитная съемка	Нивелиры H-3, H-10, HA-3 и др. Теодолиты T-2, T-15, ТаН и др.
2	Прогибы и перемещения	Нивелирование. Прогибомерами механического действия и жидкостными на принципе сообщающихся сосудов	Нивелиры: H-3, H-10, HA-1 и др. Прогибомеры механического действия ПМ-2, ПМ-3, ПАО-5. Жидкостные прогибомеры П-1
3	Прочность бетона	Метод пластических деформаций (ГОСТ 22690.0-88). Ультразвуковой метод (ГОСТ 17624-87). Метод отрыва со скалыванием (ГОСТ 226900-88). Метод сдавливания	Молоток Физделя, молоток Кашкарова, пружинистые приборы: КМ, ПМ, ХПС и др. УКБ-2, Бетон-5, УК-14П, Бетон-12 и др. ГПНВ-5, ГПНС-4. Динамометрические клещи
4	Прочность раствора	Метод пластической деформации	Склерометр СД-2
5	Скрытые дефекты материала конструкции	Ультразвуковой метод. Радиометрический метод	Ультразвуковые приборы: УКБ-1, УКБ-2, Бетон-12,

			Бетон-5, УК-14П. Радиометрические приборы: РПП-1, РПП-2, РП6С
6	Глубина трещин в бетоне и каменной кладке	Ультразвуковой метод. Радиометрический метод	Молоток, зубило, линейка. УК-10ПМ, Бетон-12, УК-14П, Бетон-5, Бетон-8УРЦ и др.
7	Ширина раскрытия трещин	Измерение стальными щупами и пр. С помощью отсчётного микроскопа	Щуп, линейка, штангенциркуль, МИР-2
8	Толщина защитного слоя бетона	Магнитометрический метод	ИЗС-2, МИ-1, ИСМ
9	Плотность бетона, камня и сыпучих материалов	Радиометрический метод (ГОСТ 17623-87)	Источники излучения Cs-137, C0-60. Выносной элемент типа ИП-3. Счётные устройства (радиометры): Б-3, Б-4, Бетон-8-УРЦ
10	Влажность бетона и камня	Нейтронный метод	Источник излучения Ra-Be, Датчик HB-3. Счётные устройства: СЧ-3, СЧ-4, «Бамбук»
11	Воздухопроницаемость	Пневматический метод	ДСК-3-1, ИВС-2М
12	Теплозащитные качества стенового ограждения	Электрический метод	Термощупы: ТМ, ЦЛЭМ. Теплометр ЛТИХП
13	Звукопроводность стен и перекрытий	Акустический метод	Генератор «белого» шума ГШН-1. Усилители: УМ-50, У-50. Шумомер Ш-60В. Спектометр 2112
14	Параметры вибрации конструкции	Визуальный метод. Механический метод. Электрооптический метод	Вибромарка, Виброграф Гейгера, ручной виброграф ВР-1. Осциллографы: H-105, H-700, OT-24-51, комплект вибродатчиков
15	Осадка фундамента	Нивелирование	Нивелиры: H-3, H-10, HA-1 и др.

Особое внимание при инструментальном обследовании зданий уделяют прочности материалов конструкций. Прочность бетона определяется как неразрушающими методами (ультразвук, пластическая деформация), так и с

частичным разрушением тела конструкции (отрыв со скалыванием, извлечение кернов для лабораторных испытаний и пр.).

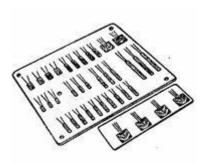
Наименование прибора Эскиз Эталонный молоток К.П.Кашкарова с угловым масштабом Прибор типа КМ Склерометр Шмидга Молоток Физделя Прибор типа ПМ Гидравлический пресс-насос ГПНВ-5 Наименование прибора Эскиз Ультрозвуковой прибор УК-10ПМ

Индикатор часового типа

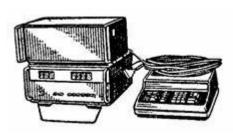
Виброграф ВР-1

Микроскоп типа МПБ-2

Прибор типа ИЗС-2


Прогибомер типа ПМ-3 конструкции Н.Н. Максимова

Тензометры Гугенбергера


Тензорезисторы для измерений деформаций

Измеритель деформаций типа АИД

То же, типа ЦТМ-5

Следует подчеркнуть, что наиболее достоверную информацию о прочности бетона даёт испытание кернов. Именно этот метод рекомендуется использовать при инструментальном обследовании ответственных конструкций. Показатели прочности арматуры устанавливают испытанием образцов, вырезанных из конструкций, в наибольшей степени поврежденных пожаром. Если отсутствуют экспериментальные данные, то величину снижения прочности бетона и арматуры определяют через понижающие коэффициенты, регламентируемые нормами проведения технического обследования здания.

Вопросы для самоконтроля:

- 1. Рассказать о назначении инструментального обследования.
- 2. Рассказать о видах инструментального обследования.