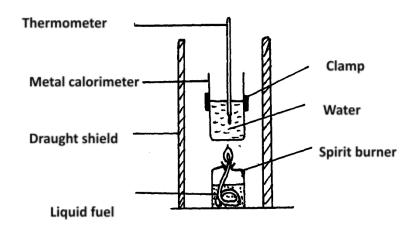
Name	Index No
Candidate's Signature	Date
233/2 CHEMISTRY	
PAPER 2 THEORY	
SEPTEMBER 2021 2 HOURS	

KASSU JET 2021 CHEMISTRY PAPER 2 Kenya Certificate of Secondary Education (K.C.S.E)

INSTRUCTIONS TO CANDIDATES


- 1. Write your name and index number in the spaces provided above.
- 2. Sign and write the date of examination in the spaces provided above.
- 3. Answer all the questions in the spaces provided.
- 4. Mathematical tables and silent electronic calculators may be used.
- 5. All working **must** be clearly shown where necessary.

FOR EXAMINER'S USE ONLY

QUESTION	MAXIMUM SCORE	CANDIDATE'S SCORE
1	12	
2	11	
3	11	
4	16	
5	14	
6	16	
Total score	80	

This paper consists of 13 printed pages

1. The diagram below shows the set-up of the apparatus used by a student to determine the enthalpy change of combustion of ethanol. The heat produced by burning fuel warms a known mass of water.

Results

Volume of water in the beaker = 500 cm^3 Initial temperature of water = 12°C Final temperature of water = 31.5°C Mass of ethanol burnt = 1.50gDensity of water = 1 g/cm^3 Specific heat capacity = $4.2 \text{ Jg}^{-1}\text{K}^{-1}$

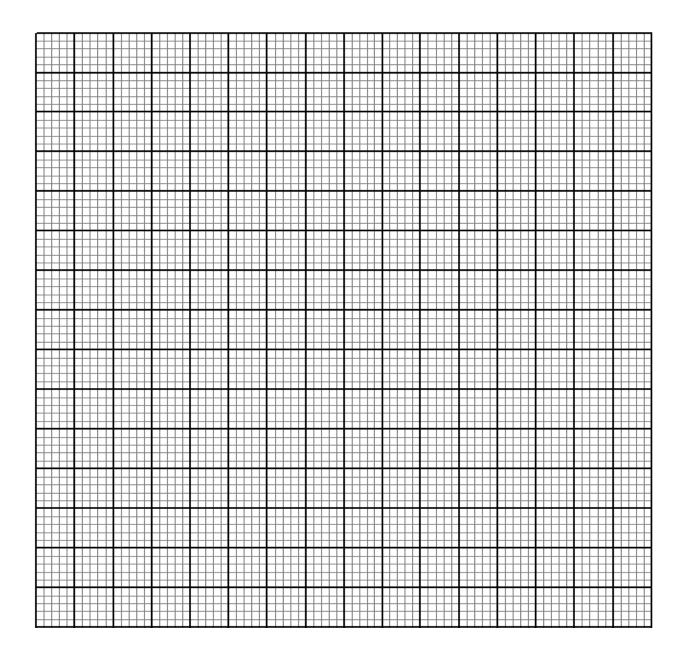
(a) <i>mark)</i>	Define molar heat of combustion.	(1
(b)	(i) Calculate the heat required to raise the temperature of the water from $31.5^{\circ}\mathrm{C}$.	

(ii) Find the molar enthalpy of combustion of ethanol.	
(C = 12, H = 1, O = 16)	

marks)

(2 marks)

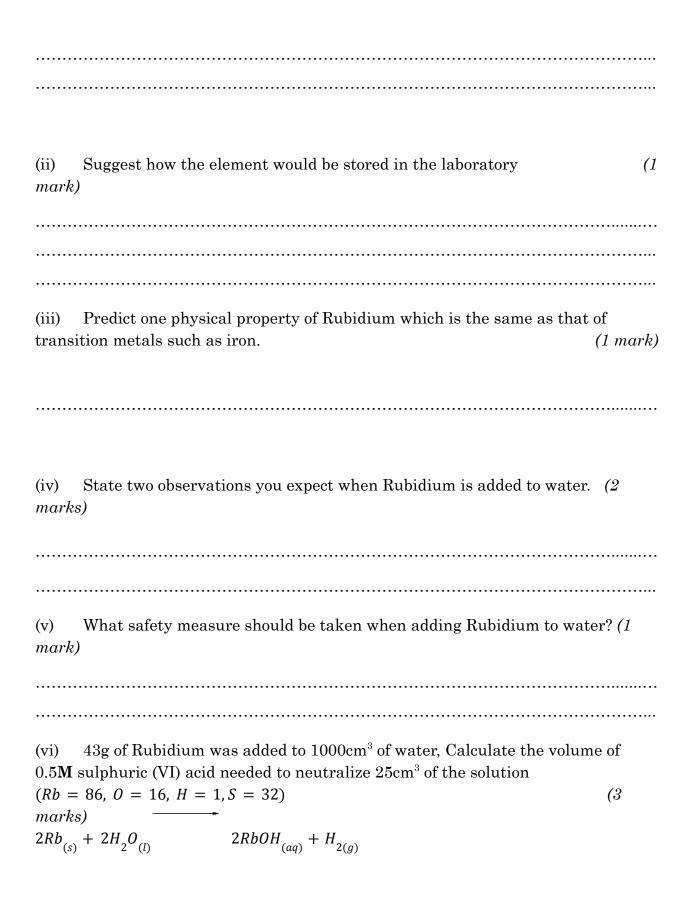
(c) An accurate value for $\Delta H_{\rm C}$ of ethanol is -1368 kJmol⁻¹. State **two** sources of errors for the low figure obtained. (2 marks)


(d) Draw an energy level diagram for the combustion of ethanol. (2)

(e) Calculate the heating value of ethanol from the above experiment. (C = 12, H = 1, O = 16) (2 marks)

(f) State one factor that one may consider when choosing kerosene as a fuel in Eldoret town. (1 mark)

2. Ammonia can be prepared in the lab by reaction of Calcium hydroxide a ammonium salt.	nd an
(a) Write an equation for the reaction that will take place. <i>mark</i>)	(1
(b) Calculate the volume of ammonia produced at room temperature and pressure given that 20g of calcium hydroxide reacted fully.	
$(Ca = 40, H = 1, O = 16, N = 14, MGV = 24dm^3)$ $(3 marks)$	
(c) (i) Write an equation to show how ammonia is used to make phosphate	
	mark)
(ii) Determine the percentage by mass of Nitrogen in the above fertilizer.	
(N = 14, H = 1, P = 31, 0 = 16) (1)	mark)


(iii) State the im	portanc	e of usi	ing am	moniun	n phosp	hate ov	er urea	as a fe	ertilizer
	••••								1 mark
(d) Describe how using concentrated (Sulphu	ric (VI)	acid as	s one of	the rea	igents.			(3
(e) State one dan mark)									(1
• () D. C.	•••••	•••••							
3. (a) Define so <i>mark)</i>	·								(i
(b) The table below									
Temperature (°C) Solubility of Y (g/100g water)	70.0	66.0	63.0	60.0	59.0	60 56.5	70 54.5	80 53	90 51
Solubility of X (g/100g water)	12.0	18.0	24.0	31.0	38.0	48.0	51.0	74.0	88.0

(ii)	At what temperature is the solubility of both X and Y the same?	(1 mark)
•••••	Which of the substances X and Y is likely to be a gas? Explain.	(2 marks)
(iv) mark)	What is the mass of Y that would dissolve in $50g$ of water at $48^{\circ}C$?	(1
•••••	Determine the solubility of salt X at $55^{\circ}\mathrm{C}$?	
(vi)	State <i>one</i> application of solubility.	(1 mark)

4. mark	(a) (i) What is meant by isomerism?	
hydr	A hydrocarbon sample is found to contain 83.3% carbon and 16.7% ogen. If the relative molecular mass of the compound is 72.0, determined as $(C = 12, H = 1)$	
	Draw the structural formula and name the compound whose molecula is in (a) (ii) above.	cular (2 marks)
	dy the chemical equation below and answer the questions that folloon CH ₃ CH ₂ COOCH ₃ + H ₂ O R W	
(i)	Name the type of reaction represented by the above equation.	(1 mark,
(ii)	State two conditions in the reaction above.	(2 marks)

potas	Write an equation for the reaction between the compound labelled R ssium hydroxide solution.	(1 mark,
(iv)	Name the type of reaction in b (iii) above.	(1 mark)
(v)	Give three differences between the reactions named in b (i) and b (iv	
Calcu	ams of methanol (CH_3OH) requires 93.5 kJ of heat to vaporise complete alate the heat required to vaporise one mole of methanol completely. = 12.0, $H = 1.0$, $O = 16.0$)	ely. (2
Calcu (C	talate the heat required to vaporise one mole of methanol completely. $= 12.0, H = 1.0, O = 16.0$	
Calcu (C	talate the heat required to vaporise one mole of methanol completely. $= 12.0, H = 1.0, O = 16.0$	(2

iodine.	t you can use to show that		(2 marks)
(c) Aluminum Oxide is amp	photeric and insoluble in wa	ater photeric oxide?	(1 mark)
(ii) Describe how	to show that Aluminium or	xide is amphoteric.	(2 marks)
6. (a) Complete the tab	ole below to show the observic (VI)acid is added to the	vation made and prop	perty
Substance	Observation	Property of Acid	
sugar			
Potassium nitrate crystals			

(b) Below is a flow chart diagram for the contact process for the manufacture of sulphuric (VI) acid. $SO_{3(g)}$ Step 1 Sulphur Drying Z Converter Air precipitation Step 2 Concetrated Concetrated sulphuric (IV) Acid sulphuric (VI) Acid Step 3 Step 4 Other than Sulphur state another substance that can be used (i) (1 mark) Both platinum and vanadium (v) oxide can be used as catalyst, explain why (ii) vanadium (V) oxide is preferred over platinum in the process (1 mark) Give the name of chambers labeled (iii) (1 mark)

(iv)	State two uses of sulphuric(VI) Acid .	(2 marks)
•••••		
•••••		
(v)	State two precautionary measures taken to prevent pollution by	the contact
proce	ss	(2 marks)
(vi)	Write the balanced equations for the reactions in;	(2 marks)
Step	2:	
Step	4:	
•••••		••••••
(vii)	Calculate the volume of sulphur (VI) oxide gas in litres that wou	
requi	red to produce 178kg of Oleum in step 3.	
(Mola	ar gas volume at s. t. $p. = 22.4L$, $H = 1$, $O = 16$, $S = 32$)	(3
mark	s)	