
Introduction
To allow comparison of packaging solutions, the WG should define a basic stack of
packages to provide a test bed. The LCG stack is quite big, so the intent is to enumerate a
common subset of this that could be used by a (small) experiment.

To help in collection and comparing requirements, the document is initially divided into two
sections. The first lists known requirements for individual projects, the second merges these
lists to define the test bed stack.

Packages used in Existing Stacks
The following sections list packages required by individual experiments/projects for both
development and runtime use. These are direct dependencies including any version
requirements plus enabled optional components. The lists are not necessarily in strict
dependency order. Use of system packages is not considered just yet.

SuperNEMO (from Ben Morgan)
●​ GCC >= 4.9 (Linux only, macOS always uses Xcode)
●​ CMake >= 3.5
●​ Doxygen >= 1.8
●​ Boost >= 1.60

○​ icu4c
●​ CAMP (being replaced with Ponder)
●​ Readline
●​ GSL >= 2
●​ CLHEP
●​ Xerces-C
●​ Geant4 >= 9.6.4
●​ Python >= 2.7
●​ ROOT >= 6

○​ Python
○​ GSL
○​ OpenSSL
○​ SQlite

●​ Qt5 (Core libraries only)
●​ Qt5Svg

FCC (from Benedikt Hegner)
●​ GCC >= 6.2
●​ ROOT >=6.10
●​ Geant4 >= 10

https://github.com/drbenmorgan/camp
https://github.com/billyquith/ponder

●​ Gaudi >= 29v1
●​ Python >= 2.7
●​ ACTS
●​ PODIO
●​ DD4hep
●​ Plus their dependencies

LHCb (from Ben Couturier)
●​ Gaudi >= v29r1
●​ Gcc > = 6.2
●​ ROOT >= 6.10.06 (c.f. LCG 91)
●​ BOOST => 1.64.0
●​ CLHEP >= 2.3.4.4
●​ GSL >= 2.1
●​ CppUnit
●​ HepPDT >= 2.06.01
●​ Python > = 2.7.13
●​ XercesC >= 3.1.13
●​ rangev3
●​ tbb
●​ Plus dependencies

Art (from Lynn Garren)
●​ GCC >= 6.3.0
●​ CMake >= 3.9.2
●​ Boost 1.65.1
●​ Sqlite 3.20.01.00
●​ Python 2.7.14
●​ TBB 2018
●​ CLHEP 2.3.4.5
●​ Cppunit 1.3.2
●​ ROOT 6.10.08
●​ Fftw 3.3.6.pl2
●​ Libxml2 2.9.5
●​ Xrootd 4.7.0
●​ Geant4 10.3.p01 and 10.2.p03

○​ Not a direct art dependency
○​ Optional link to Qt5

Miscellaneous
●​ Nvidia CUDA Toolkit 9.0

Wire-Cell
●​ Eigen3 >= 3.3.0
●​ FFTW3 >= 3.3.0
●​ Jsonnet >= 0.9.4
●​ JSONCPP >= 1.7.7

CMSSW FWLite 9.2.13 on macOS (Patrick Gartung)
●​ Apple Clang 8.1 or 9.0
●​ ROOT 6.11.02

○​ Cfitsio 3.410
○​ Fftw 3.3.6
○​ Freetype 2.7.2
○​ Libtiff 4.0.8
○​ Libpng 1.6.29

●​ Boost 1.63.0
●​ Python 2.7.14
●​ Clang python bindings with libclang.dylib from homebrew llvm 4.0.1.
●​ CLHEP 2.3.4.2
●​ Expat 2.2.2
●​ HEPMC 2.06.09
●​ Libuuid 1.0.3
●​ Libxml2 2.9.4
●​ Gmake 4.2.1
●​ Scram 2.2.6
●​ Xerces-c 3.1.4
●​ Tbb 20161128oss
●​ Pcre 8.40
●​ Md5-cms 1.0.0
●​ Tinyxml-cms 2.5.3
●​ Fireworks-data (runtime)
●​ Vdt 0.3.9 (runtime)
●​ Xrootd 4.6.0 (runtime)

Combined Package List for the HSF Test Stack
The following stack results from merging the lists presented in the previous sections. It is
listed in lowercase alphabetical order. When multiple versions of the same package have
been listed, all version specifiers are listed for clarity. It does not yet fully resolve all
dependencies

1.​ acts
2.​ boost >=1.60, 1.63.0, >=1.64.0, 1.65.1
3.​ camp (being replaced with ponder)
4.​ cfitsio 3.410
5.​ clang python bindings with libclang.dylib from homebrew llvm 4.0.1.
6.​ clhep 2.3.4.2, >=2.3.4.4, 2.3.4.5
7.​ cmake >=3.5, >=3.9.2
8.​ cppunit 1.3.2
9.​ dd4hep
10.​doxygen >= 1.8
11.​eigen3 >= 3.3.0
12.​expat 2.2.2
13.​fftw >= 3.3.0, 3.3.6, 3.3.6.pl2
14.​fireworks-data
15.​freetype 2.7.2
16.​gaudi >= v29v1
17.​gcc >= 4.9, >= 6.2, >= 6.3.0
18.​geant4 >= 9.6.4, >= 10, 10.3.p01, 10.2.p03
19.​gmake 4.2.1
20.​gsl >= 2, >= 2.1
21.​hepmc 2.06.09
22.​heppdt >= 2.06.01
23.​icu4c
24.​jsoncpp >= 1.7.7
25.​jsonnet >= 0.9.4
26.​libtiff 4.0.8
27.​libuuid 1.0.3
28.​libxml2 2.9.4, 2.9.5
29.​linpng 1.6.29
30.​md5-cms 1.0.0
31.​openssl
32.​pcre 8.40
33.​podio
34.​python >= 2.7, >= 2.7.13, 2.7.14
35.​qt5base
36.​qt5svg
37.​rangev3

38.​readline
39.​root >= 6, >= 6.10, 6.10.06, 6.10.08, 6.11.02
40.​scram 2.2.6
41.​sqlite 3.20.01.00
42.​tbb 20161128oss, 2018
43.​tinyxml-cms 2.5.3
44.​vdt 0.3.9
45.​xcode, 8.1, >=9.0 (macOS only)
46.​xerces-c >= 3.1.13, 3.1.4
47.​xrootd 4.6.0, 4.7.0

For a test stack, this is a non-trivial number of packages, especially when dependencies are
considered. Given the requirements from experiments/projects it’s possible to trim this
slightly to a list of most commonly used packages. Newest versions should also be
considered, though with consideration for OS level support.

Reuse of OS Packages
Package managers typically assume a “blank slate” system so that all dependencies can be
resolved. Using a secondary package manager (e.g. Spack, Portage) on top of the system
package manager (yum, apt etc) may result in the installation of packages that could be
taken from the system install. Examples of packages that could be reused from the system
are OpenSSL and X11. Fresh installs of packages through the secondary package manager
may be best done when there is a requirement for

●​ A newer version than the system supplies
●​ A patched or custom install (e.g. additional components)

Whilst the Test Stack should enumerate all dependencies, a longer term aim should be to
define a “Base System” of system packages that could be reused (plus, the tools available in
package managers like Spack, Portage to enable this reuse).

On Linux, this will be highly distribution/version dependent, but for CentOS and Ubuntu
systems the HEP_OSlibs meta-rpm/deb provides an example of how such a base system
could be defined.

On macOS, the base system is pre-defined based on the OS/Xcode version.

Test Driving the Package Managers
Based on discussion in HSF Packaging Meeting #14, a minimal subset of packages was
identified to exercise the package managers being looked at by the WG. To enable to WG,

https://gitlab.cern.ch/linuxsupport/rpms/HEP_OSlibs

and the broader community, to test drive the package managers, this stack has been
combined with a basic checklist of tasks to create a template that each package manager
can fill in to provide a “driving lesson”. To keep things simple to begin with, some simplifying
assumptions are made:

1.​ Docker images are used for Linux testing. This is purely for consistency and
reproducibility, and does not suggest that containers will be the only way to use a
given package manager! It also helps to enumerate the OS packages that are always
needed.

2.​ No use of CVMFS is assumed yet. This is so that test drivers can get a feel for
building from source, installing from binary, writing packages for their own software,
and the balance between reuse of OS packages vs “compile the world”. It does not
imply that CVMFS will not be used later, but users will have to go through the
packaging steps to have something to deploy to CVMFS! Smaller experiments may
also not have access to CVMFS.

3.​ The test driver may have sudo access, but the steps requiring this should be
minimized and ideally zero.

The following sections provide a draft template for each step, italic text is for things to be
filled out for the specific package manager. It’s fine to just link to external documentation!

Test Driving the “X” Package Manager

Base Operating System Install

Authors: assume either a macOS High Sierra with Xcode 9, or a Docker Image based on
centos:centos7 or ubuntu:xenial. In the Docker case, supply (a) Dockerfile(s) for each
system, adding any additional system packages required, and finally create an “hsf” user
with sudo privileges that the container will run with. There’s no requirement to build and host
the images. Bonus points: Singularity! If macOS needs additional packages, document them
below:

Test driving “X” requires either a CentOS6/7, Ubuntu 16.04LTS, or macOS High Sierra
system. For macOS, only the base system plus Xcode 9 from the App Store [add any
additional requirements here] is required. For convenience and reproducibility, Docker
images are available for Linux, and can be obtained and run as follows:

Add Docker pull/build/run instructions here

Optionally, you may use an existing Linux install, but you may encounter errors in
subsequent steps if it is missing (or has incompatible) packages, or your environment has
custom settings.

Installing “X”
To install “X”, [Add instructions here, aim should be to get a base install with NO, or at least
the most minimal set possible, installed. Include a set of test/sanity checks if the packages
manager allows]

Installing the Test Stack
The basic HSF Test Stack packages are as follows:

●​ Toolchain
○​ GCC 6.4

■​ With c, c++, fortran languages
○​ Python 2.7.14
○​ [Add Any tools needed to build Stack packages]

●​ Core Packages
○​ Boost 1.65
○​ ROOT 6.12.06

■​ Including PyROOT, MathMore
○​ GSL 2.4
○​ Qt5 5.10 (Base system only)
○​ Xerces-C 3.1.4
○​ CLHEP [Version to be compatible with Geant4]
○​ Geant4 10.3

[Add commands, instructions to install these packages from source and from binary if
available]
[Optional: Show other features, such as different C++ standards, optional components of
ROOT]

Adding a New Package
To add a new package to the stack, [Add instructions here]

Example: Homebrew
Not being considered, but here used as an example of filling out the template (Note that it
doesn’t cover everything, nor the exact versions - that’s fine, and also for other package
managers. We want to identify problem areas!

TODO (Ben)

	Introduction
	Packages used in Existing Stacks
	SuperNEMO (from Ben Morgan)
	FCC (from Benedikt Hegner)
	LHCb (from Ben Couturier)
	Art (from Lynn Garren)
	Miscellaneous
	Wire-Cell
	CMSSW FWLite 9.2.13 on macOS (Patrick Gartung)

	Combined Package List for the HSF Test Stack
	Reuse of OS Packages
	Test Driving the Package Managers
	Test Driving the “X” Package Manager
	Base Operating System Install
	Installing “X”
	Installing the Test Stack
	Adding a New Package

	Example: Homebrew

