
Project 3
Due: March 13th (Wednesday) before 11:59 pm

1. Learning Goals
The purpose of this assignment is to quickly become good at writing C programs, gaining the
experience of working in a non-object oriented language. By the end of this assignment you
should be comfortable with arrays, command-line arguments, file I/O, pointers, and structures in
C. Additionally you will learn how to implement a linked list and some of its basic operations
such as list traversal, node addition, and sorting a linked list.

2. Specifications
In this assignment, you will write a C program named list.c that reads a list of integers from
an input file, stores them in an array and linked list, then builds a sorted linked list and then
writes the sorted output to a new file.

2.1. Generate integers and store it in a file
To begin with, you are given the program generate.c, which generates a random set of
integers and prints out every integer in its own line to the console (stdout). The program takes
two command line arguments:

1.​ <total_nums>: The number of integers to be generated
2.​ <max_num>: The upper bound on the highest value

To use this program to generate the input file for list.c do the following:

1.​ Create a folder named p3 in your private/354 directory that you created for
assignment 2.

2.​ Copy the generate.c file into your p3 directory. You may find this file here:
http://pages.cs.wisc.edu/~gerald/cs354/Spring2019/projects/p3/generate.c

3.​ Compile the program and store the executable in a file named generate.
4.​ Run the program using the following command:

./generate 20 100

For the purpose of this program we will keep the number of integers (20 in this case)
below 1000 which is defined as a symbolic constant MAX_INTS in list.c.

5.​ The program should have printed out a list of integers to stdout, each on its own line.

http://pages.cs.wisc.edu/~gerald/cs354/Spring2019/projects/p3/generate.c

6.​ Alter the shell command such that the output sent to stdout is instead captured in a file.
This is called a shell redirect.

./generate 20 100 > numbers.txt

7.​ The program should have created a file named numbers.txt, which contains a list of
integers written as ASCII characters.

8.​ To try to see the results, you might try the shell command:
cat numbers.txt

Figure 1: Output of generate.c

2.2. Read the integers from the file and build a linked list
For this and the next parts of the assignment you have been provided with the file list.c
which contains skeleton code for the functions that you need to complete to make the program to
work as expected. Copy the list.c file into your p3 directory. You may find this file here:
http://pages.cs.wisc.edu/~gerald/cs354/Spring2019/projects/p3/list.c

The program takes in a single command line argument <input_file> which is the name of
the file containing the list of integers to sort.

1.​ Open the file whose name is given as the command line argument.
2.​ Read the integers one at a time from the file, and place each integer in an array of size

MAX_INTS.
3.​ Print the array using the print_array function.
4.​ Create a linked list from the array using the create_list function, and print the list

using the print_list function.

To create the list you will essentially need to complete the following functions:​

●​ struct node* create_list(int intarray[], int len)​

○​ This function takes in an integer array and its size, traverses the array while using
the function add_item_at_start(struct node *head, int
data)to build a list. This function returns the head of the new linked list that was
created.​

●​ struct node* add_item_at_start(struct node *head, int data)​

○​ This function takes in a pointer to the head of the linked list, adds a new node
with the data at the beginning of the list, updates and returns the new head.

NOTE:
A pointer to the first node in the list identifies where the list is. It is called the head of the list. If
the head has the value NULL, then the list is empty. The structure of a node has already been
provided for you in the code skeleton.

http://pages.cs.wisc.edu/~gerald/cs354/Spring2019/projects/p3/list.c

2.3. Search for integers
Next we will have the user input a number for which we will search both the array and the linked
list to confirm its index and position in both of them.

1.​ Prompt the user for a number to search (as shown in Figure 2) and read the input from the
keyboard (stdin).

2.​ Search for the number in the array to find its index. This can be done by completing the
search_array(int integers[], int numints, int element)
function. This function returns the index of the element if the element is found in the
array, otherwise it returns -1. The array index is zero based, and its value goes from 0 to
n-1, where n is the number of elements in the array. The first element in the array is at
index 0 (zero).

3.​ Print the result of the search and the index of the number if it was found in the array. See
Figure 2 for the output format.

4.​ Search the number in the linked list to find its position. This can be done by completing
the search_list(struct node *head, int element)function. It returns
the position of element if found in the list, otherwise -1. The position value ranges
from 1 to n. The first node in the linked list is at position 1 (one).

5.​ Print out the result of the search and the position of the number if it was found in the
linked list.

6.​ Repeat steps 1-5 until the user enters the character ‘q’, in which case stop prompting the
user for an input and move on. You can assume that the user will only enter a valid
integer or the character ‘q’.

s2.4. Sort the linked list and write the output to a file
Now we will sort the numbers by constructing a new list. Be careful not to destroy the original
list that we created in section 3.2

1.​ Create a new sorted list by calling
​ create_sorted_list(struct node *head)

which takes in as input the head of our original list, constructs a new sorted list
(ascending order), and returns the head of the sorted list. This function should use
add_item_sorted(struct node *sorted_head, int data)
The way this works is that for every node in the old list, you insert it into the new list in
its correct position based on the sort order. This is also called insertion sort. For example,
in the list shown in Figure 2, when we create the sorted linked list we would insert the

first node with value 59 from the original linked list to the sorted linked list. Next, when
we try to insert the second node from the original linked list (with a value of 98) into the
sorted linked list, we need to make sure that this node with value 98 is inserted after the
node with value 59. So, if you try to print the sorted linked list after inserting two nodes
in the sorted order it would look like as shown below:​
​
SORTED LINKED LIST: head → |59| → |98| → NULL​
​
Print the sorted list using the print_list function.

2.​ Copy the sorted list to a new array using the function
copy_list_to_array(struct node *head, int *array)which takes in a
pointer to the head to a list and a pointer to the start of an array, and returns the number of
integers copied to the array. Please make sure that you don’t overwrite the contents of
your original unsorted array.

3.​ Print the sorted array using the print_array function.
4.​ Print the original linked list again using the print_list function.
5.​ Print the original array again using the print_array function.
6.​ Open a new file named “sorted_numbers.txt”.
7.​ Write the sorted integers from the sorted array to this file, line by line with each integer

on its own line.
8.​ Close the file and print out the number of integers written to the file.

Figure 2: Output of list.c
NOTE:

1.​ The final output should look similar to Figure 2.
2.​ The contents of the file sorted_numbers.txt should be as shown in Figure 3.

Figure 3: Contents of sorted_numbers.txt

3. Error Handling
●​ If the user invokes the list program incorrectly (for example, without an argument, or

with two or more arguments), the program should print an error message and call
exit(1)as shown below.​

●​ Be sure to always check the return value of library functions. For example, if a file cannot
be opened, then the program should not read input. Instead it should print an error
message as shown below. Points will be deducted for forgetting to check return
values from library functions.​

​

●​ These guidelines will apply to later programs as well!

4. Notes and Hints
●​ Using library functions is something you will do a lot when writing programs in C. Each

library function is fully specified in a manual page. The man command is very useful for
learning the parameters a library function takes, its return value, detailed description, etc.
For example, to view the manual page for fopen, you would issue the command “man
fopen”. If you are having trouble using man, the same manual pages are also available
online. You will use these library functions to write this program:

○​ fopen() to open the file.
○​ malloc() to allocate memory for a new linked list node.
○​ fgets() to read each input from a file. fgets can be used to read input from the

console as well, in which case the file is stdin, which does not need to be opened
or closed. An issue you need to consider is the size of the buffer. Choose a buffer
that is reasonably large enough for the input.

○​ fclose() to close the file when done.
○​ printf() to display results to the screen. To view the manual page, use “man 3

printf” on a Linux machine.
○​ fprintf() to write the integers to a file.
○​ aoti()to convert the input which is read in as a C string into an integer.

●​ When opening a file for reading using fopen, make sure you specify the correct mode
(read or write) for which you are opening the file.

●​ Remember to #include the corresponding header files needed for all these library
functions.

5. Requirements
1.​ Your program must follow style guidelines as given in Style Guidelines.
2.​ Include a comment at the top of each source code file with your name and section. You

must comment every function with a header comment. See the Commenting Guide,
where applicable for C.

3.​ Your programs should operate exactly as the sample outputs shown above.
4.​ Use a Linux machine for this assignment!
5.​ We will compile each of your programs with​

gcc -Wall -m32 -std=gnu99​

on a CSL Linux machine. So, your programs must compile there, and without warnings
or errors. It is your responsibility to ensure that your programs compile on the
department Linux machines, and points will be deducted for any warnings or errors.

6.​ Remember to do error handling in all your programs. See the instructions on error
handling for more details.

6. Handing in the Assignment
Copy the file list.c into your handin directory:
/p/course/cs354-gerald/public/spring2019/handin/<your_CS_login>/p3/

where <your_CS_login> is the username of your CS account.

Good luck with the assignment!

http://pages.cs.wisc.edu/~gerald/cs354/Spring18/style.html
https://docs.google.com/document/d/1AOb4eYCH47RWQ7dbnc1ntRGeH1aVkg3yREtgbDJzjek/edit?usp=sharing

	Project 3
	1. Learning Goals
	2. Specifications
	2.1. Generate integers and store it in a file
	2.2. Read the integers from the file and build a linked list
	2.3. Search for integers
	s2.4. Sort the linked list and write the output to a file

	3. Error Handling
	4. Notes and Hints
	5. Requirements
	6. Handing in the Assignment

