
Controlling BeginFrames through DevTools (headless)
PUBLIC
bit.ly/bfc-v1
Authors: eseckler@
November 7th, 2016

Motivation
In a headless environment, rendering results are only visible in screenshots. Thus, it is usually not
necessary to render frames periodically (as it normally happens on vsync) to avoid computational
overhead. For some pages, however, it is not enough to only render a frame when a screenshot is
requested, e.g. because they rely on animations progressing (CSS animation notifications),
requestAnimationFrame being called, or layout to happen periodically to function correctly.

To have better control over how often frames are rendered, we’re proposing to add a (headless-only)
mode for which the default vsync signal (BeginFrameSource) is disabled and BeginFrames are issued
through DevTools commands instead. This will allow headless embedders to control when/how often
frames are rendered.

Some headless embedders also care about the reproducibility of rendering results. For example, if we
execute a page until t=10s and then issue a BeginFrame to grab a screenshot, we would expect that the
resulting frame contains renderer updates from t=10s (and not an old CompositorFrame, a stale renderer
main frame, or animation updates from t>10s). For this purpose, we propose a full-pipeline BeginFrame
mode in the compositors, which makes each frame-producing pipeline stage waits for all its children’s
updates before drawing a frame (browser display waits for renderer surfaces, renderers wait for main
frames).

Summary of required compositor changes

Primarily browser-side
●​ cc::BeginFrameArgs

○​ Sequence numbers.
●​ cc::Surface / cc::CompositorFrameSinkSupport

○​ Track ACK/NACK from sinks.
●​ cc::Display(Scheduler)

○​ Swap its BeginFrameSource with an externally controlled one.
○​ Track ACK/NACK from Surfaces.
○​ New full-pipe mode that waits indefinitely for all surfaces and draws/swaps once all

Surfaces have acknowledged the current BeginFrame.
●​ cc::CompositorFrame

○​ Store BeginFrame sequence numbers for contained main and impl frame.

http://bit.ly/bfc-v1

Primarily renderer-side
●​ cc::Scheduler / cc::SchedulerStateMachine

○​ New full-pipe mode that waits indefinitely for all frame/raster pipeline stages that have
updates and commits once all have completed. Also disables latency optimizations, i.e.
does not skip BeginImplFrame or BeginMainFrame and never prioritizes the impl-thread.

●​ cc::LayerTreeHostImpl
○​ Attach sequence numbers to CompositorFrame, forward NACKs to frame sink.

●​ content::CompositorExternalBeginFrameSource / viz::ClientLayerTreeFrameSink
○​ Notify RenderWidgetHost(View) on NACK from Scheduler/LayerTreeHostImpl.

Approach
In principle, we need to be able to control rendering of different RenderViews/WebContents separately,
since we may have multiple parallel (and independent) WebContents. However, BeginFrames are issued
on the browser-level (normally from the device/display through BeginFrameSources, which “tick” on vsync)
and propagated to the RenderViews (originally through ViewMsg_BeginFrame, now via the
LayerTreeFrameSink mojo interfaces). The RenderView will then supply a frame to the browser if it has
updates.

Normally, the RenderView’s frame will only be displayed as a result of the original browser-side
BeginFrame if it submitted the frame before the BeginFrame’s deadline. Otherwise, it may be delayed until
a later browser-side BeginFrame. Because this is problematic for headless (see section below), we will add
a new compositing mode in which the browser ignores the BeginFrame deadline and waits for the frame
from each RenderView. Similarly, this mode also ensures that the each RenderView incorporates all
pending main thread updates into its frame.

Thus, we need commands/events to, per WebContents:

●​ Enable the DevTools-controlled BeginFrame mode.
○​ This disables vsync-driven BeginFrame sources.

●​ Enable the full pipeline compositing mode.
○​ This ensures that every BeginFrame waits for all compositing pipeline stages.

●​ Get notified about needsBeginFrame changes.
○​ (We can only issue BeginFrames while needsBeginFrame is true.)

●​ Issue a BeginFrame.
○​ Specifying the frame time, interval, and (optionally) deadline.
○​ If not specified, deadline is calculated from frame time and interval.

●​ Get notified about commit / NACK of a BeginFrame in the browser.
○​ This should be the frame committed as a result of the BeginFrame - and includes the

CompositorFrames of all of the WebContent’s renderers.

Full-pipeline rendering mode (infinite deadlines)
For headless, we care about deterministic and complete rendering, but we don’t care about missing a
vsync deadline, since we don’t produce frames for an actual display. Therefore, we intend to add a mode
to the compositor schedulers (Scheduler and DisplayScheduler) in which each rendering stage waits for
all its children to produce fresh frames before committing them as a response to the BeginFrame. In
particular, this means that:

https://cs.chromium.org/chromium/src/cc/scheduler/begin_frame_source.h?l=100
https://cs.chromium.org/chromium/src/content/common/view_messages.h?l=595

●​ The cc::DisplayScheduler in the browser waits until all surfaces (particularly surfaces of
RenderWidgetHostViews) have submitted a new frame (or acknowledged that they don’t have
any updates).

●​ The cc::Scheduler in the renderer issues a BeginMainFrame and waits until the next main frame
is submitted (or the main thread acknowledges that it does not have any updates). It also waits
for any necessary tiles to be prepared.

●​ As soon as all children have submitted updates or acknowledged, the deadline is triggered.

To enable reuse of this functionality in other places in Chromium (e.g. during resizes), we intend to:

●​ Make cc::DisplayScheduler (browser) commit immediately when all currently active
BeginFrameObservers of the Display’s BeginFrameSource finished the BeginFrame. This is similar to
the DisplayScheduler’s existing early commits, but replaces the existing heuristic with a
mechanism that can accurately track active and inactive Surfaces.

●​ Make cc::Scheduler (renderer) commit immediately when all stages have completed (main
frame, impl frame, raster). This is different to current behavior (commit only on deadline). With
buffered input on all platforms (soon), this should be OK as a default behavior.

To implement these changes, we also need to

●​ Track which Surfaces have received and responded to a BeginFrame in the DisplayScheduler.
●​ Detect no-update/abort acknowledgements via the reverse path of BeginFrames through

Surfaces, CompositorFrameSinks, LayerTreeHostImpl, and Scheduler. For this purpose, we will
add a BeginFrameAck/Nack mechanism to these entities and between the renderers and browser.
ACK/NACKs will include a sequence number of the BeginFrame that is acknowledged. ACKs can
be packaged together with the corresponding CompositorFrame.

●​ See this design doc for BeginFrame sequence numbers and acknowledgments.

Implementation notes

Proposed DevTools Commands
We can probably only enable the BeginFrameControl and the full-pipe compositing on target creation.
Thus, we will add new (headless-only) parameters to Target.createTarget:

Target.createTarget(..., enable_begin_frame_control, wait_for_all_pipeline_stages)

We will further need commands to issue BeginFrames and be notified on acknowledgment:

<Domain>.onSetNeedsBeginFrame(bool beginFrameNeeded)

<Domain>.sendBeginFrame(frameTime, frameInterval [, deadline]) returns sequenceNumber

<Domain>.onFrameAcknowledged(sequenceNumber, didCommitNewFrame)

The domain for these commands is to be considered (e.g. Emulation or a new Headless domain).

Controlling BeginFrame propagation to individual WebContents
Headless chrome primarily supports Aura platforms. On Aura, each WindowTreeHost has its own Display,
and each Display its own BeginFrameSource. If we separate each WebContents into its own

https://cs.chromium.org/chromium/src/cc/surfaces/display_scheduler.h
https://cs.chromium.org/chromium/src/cc/scheduler/scheduler.h
https://docs.google.com/document/d/1L2JTgYMksmXgujKxxhyV45xL8jNhbCh60NQHoueKyS4/edit
https://docs.google.com/document/d/1nxaunQ0cYWxhtS6Zzfwa99nae74F7gxanbuT5JRpI6Y/edit#

WindowTreeHost, we could thus replace an individual Display’s BeginFrameSource to control propagation of
BeginFrames to the window’s WebContents. This should suffice for an initial version.

Alternative approaches that also support other platforms or multiple WebContents per WindowTreeHost
need to consider Display-sharing between WebContents and WebContents that are placed on multiple
Displays (e.g. on ChromeOS). Thus they need to multiplex BeginFrames from the same
Display/BeginFrameSource to specific Surfaces/BeginFrameObservers, additionally complicating the
necessary logic changes to the DisplayScheduler.

Alternatives considered

1. Separate commands to control browser’s BeginFrames and view’s BeginFrames.
We could disable “automatic propagation” of BeginFrames from the browser-side to RenderViews and
control Begin(Main)Frames for browser and each RenderView separately through DevTools. This may be
more flexible than issuing BeginFrames through the browser’s compositor, but quite brittle. It would
require custom solutions for e.g. OOPIFs and risks diverging from expected behavior of the default
compositing mode accidentally (e.g. due to future changes to the compositor).

2. Forcing a renderer main frame update for every BeginFrame + utilizing LatencyInfos to
track renderer main frame commits to the browser.
DevTools’ screenshots rely on forcing a main frame update and tracking the resulting CompositorFrame to
the browser using a LatencyInfo attached to the CompositorFrame. An early prototype of
BeginFrameControl tried to use (abuse?) forced redraws and LatencyInfos instead of BeginFrameAcks to
wait for the renderer’s updates. For each BeginFrame, we also issued a ViewMsg_ForceRedraw and the
browser’s DisplayScheduler would wait for a CompositorFrame containing the corresponding LatencyInfo
before drawing.

The disadvantages of this include:

●​ Forced main frame updates even if there are no changes (unnecessary overhead).
●​ Abuse of LatencyInfo mechanism for non-tracing logic.
●​ Timing issues between ViewMsg_ForceRedraw in renderer main thread and BeginFrame in

compositor thread.
●​ Requires quite intrusive changes to cc::Scheduler and cc::DisplayScheduler.

3. Using surface synchronization to force main frame updates and ensure updates have
propagated.
Surface synchronization is a new mechanism for synchronizing updates to multiple compositing surfaces,
intended primarily to help avoid guttering during resizes. It’s based on two principles:

1.​ A parent in the surface hierarchy assigns new surface IDs for its children (e.g. when a resize
begins). The parent’s CompositorFrame includes references to these new surface IDs.

2.​ The display compositor waits for submission of all referenced child surfaces before “activating”
the parent’s new CompositorFrame (up to a deadline).

We considered using surface synchronization instead of adding the full-pipeline mode. Using surface
synchronization, renderer updates could be forced by force-assigning new surface IDs to all clients and
waiting for activation of a new CompositorFrame. This would need to be combined with a mechanism to

https://codereview.chromium.org/2411793008/#ps10065

force a main frame update in the renderer as well. Additionally, it doesn’t ensure that all tiles were present
for the first CompositorFrame submitted to the new surface IDs.

As some clients may require multiple BeginFrames to render results, this approach would have also
required adding support for re-running BeginFrames to ensure determinism (issuing multiple BeginFrames
with the same timestamp). Further, setting new surface IDs on each rendered frame would introduce
additional overhead when no actual changes are present between frames, as new CompositorFrames
need to submitted and drawn.

4. Tracking whether a renderer did include all updates into its latest CompositorFrame.
Instead of adding a full-pipeline mode for headless, we considered tracking how “stale” a
CompositorFrame submitted by a renderer was, i.e. how old the updates from the main thread are that
were included a display compositor’s last frame. This staleness was tracked as a BeginFrame sequence
number. We intended to then issue BeginFrames until the staleness sequence number matched the
sequence number of a sufficiently recent BeginFrame.

However, tracking this “staleness” actually turned out to be more complicated than adding the full-pipeline
mode described above, primarily because of all the plumbing involved. It would have also required
additional changes to support “re-running” a BeginFrame with the same timestamp multiple times, until the
required updates had propagated through all pipeline stages.

5. Android WebView’s OnDraw
Android WebView synchronously draws a RenderView’s frames using LayerTreeHostImpl::OnDraw. We
considered using this OnDraw method for headless, too. However, it wasn’t a good fit architecturally for
headless:

●​ OnDraw requires synchronous IPCs, which we want to avoid in headless.
●​ This approach would not support integrating updates drawn on different surfaces, such as

OOPIFs or canvases/videos rendered onto other surfaces.

6. VisualStateCallbacks instead of BeginFrame sequence numbers / acknowledgments.
To avoid the need for implementing a separate acknowledgment path for BeginFrames, we considered
inserting and tracking VisualStateCallbacks instead. These callbacks would have allowed us to notice
when a main frame update was propagated into the browser. However, making VisualStateCallbacks
support “no update” acknowledgments required a number of complicated changes as well, and were racy
in a non-sync-IPC context.

https://codereview.chromium.org/2411793008/#msg37

	Controlling BeginFrames through DevTools (headless)
	Motivation
	Summary of required compositor changes
	Primarily browser-side
	Primarily renderer-side

	Approach
	Full-pipeline rendering mode (infinite deadlines)

	Implementation notes
	Proposed DevTools Commands
	Controlling BeginFrame propagation to individual WebContents

	Alternatives considered
	1. Separate commands to control browser’s BeginFrames and view’s BeginFrames.
	2. Forcing a renderer main frame update for every BeginFrame + utilizing LatencyInfos to track renderer main frame commits to the browser.
	3. Using surface synchronization to force main frame updates and ensure updates have propagated.
	4. Tracking whether a renderer did include all updates into its latest CompositorFrame.
	5. Android WebView’s OnDraw
	6. VisualStateCallbacks instead of BeginFrame sequence numbers / acknowledgments.

