

Removing a critical roadblock: tackling the web font
performance problem
I was recently extended the honor of participating in the W3C Web Fonts Working Group as an
Invited Expert. The group was previously responsible for bringing us the WOFF and WOFF2
font format standards, and has had its charter extended to work on something new: taking on
the performance problem of font downloads. This is a really important challenge to resolve,
especially with regard to the emergence of variable fonts. I’ll explain where we’re headed in a
moment, but first a bit a bit of history.

Boon & bottleneck
Download performance has always been a barrier to adoption—or at least a bone of
contention—with regard to using web fonts on Western-language websites, even with font file
sizes of 20-50k. Arabic and some Asian sites have often had to forgo using web fonts entirely as
the files could be 2.5MB for an Arabic font, to as much as 16MB or more for a typical Chinese/
Japanese/ Korean (or CJK) one due to the complexity and number of glyphs in the character
sets.

For a number of years Monotype, Adobe, and Google have had the capability to dynamically
subset font files on a per-page basis. This allows them to serve font files with only the glyphs
necessary to render a given page. Unfortunately, due to some technical limitations, these
solutions were only ever employed for CJK and some other non-Western fonts. Google has
experimented with other solutions as well, including allowing for font requests to include subset
ranges—but they have their own challenges of range sizes and losing OpenType features
across subsets.

Setting the stage
Last year TYPO Labs in Berlin hosted a W3C CSS Working Group meeting where they
discussed, among other things, the emerging standards and specs for supporting variable fonts.
Along the way there was discussion of Adobe, Apple, Google, Monotype, and Mozilla
collaborating with the W3C to develop a better, more universal solution for serving web
fonts—particularly very large ones—that would work better and in a more sustainable and
reusable way. A number of other type foundries and software vendors are contributing as
well—it’s truly an industry-wide collaboration.

A simplistic description would be something like ‘font streaming’ but in truth that wouldn’t
actually solve the problem: users would still be constantly downloading entire font files even if
they only needed a small portion to render the one or two pages they might view on a given site.

The problem with existing subsetting solutions is that either the subset is thrown away with each
page view or the solution requires a proprietary server resource, thereby greatly reducing the
usefulness of the subset while increasing the complexity and resource requirements on the
server.

The ideal solution would combine the benefits of both of these approaches: subset a font
request to what’s necessary for a given page, but add to the original font asset on subsequent
content requests, thereby enabling the gradual enrichment of the font file. Adobe has been
doing something like this for a while with their own custom implementation, which shows it’s
possible to preserve the enriched font’s cacheability and greatly enhances the viability of using
web fonts with very large character sets like Arabic and CJK.

So that’s what we’re trying to do.

(And to be fair, when I say ‘we’ I really mean all the amazingly smart engineers involved from all
the participating organizations)

It’s all in the name
The concept we’re trying to bring to life has been dubbed ‘progressive font enrichment’—so it’s
clear that there are no marketing folk on the working group 🙂 But it does accurately describe
what we feel the solution should accomplish: to enable the ability for only the required part of
the font be downloaded on any given page, and for subsequent requests for that font to
dynamically ‘patch’ the original download with additional sets of glyphs as required on
successive page views—even if they occur on separate sites.

While there are still a number of ideas being investigated, the team at Google have created a
proof of concept that illustrates the concept and potential quite well. As a group we’ve been
adding details and suggestions, and this will likely continue to evolve—but since it has come up
at a few events over the past weeks, we felt this was a good time to provide a bit more context
along with a link to the demo itself.

The concept, proven
The Google Fonts team put the demo online here, and it is publicly available. There are a bunch
of options being evaluated and researched, so I thought it would be good to annotate the
interface a little bit so you can see what we’re hoping it will accomplish.

Below you can see the interface as you’ll likely find it (at least how it looks today, on 24 April,
2019). There is a brief explanation, some options to configure, a place to supply some text, and
then the output showing how much font information is served and the rendered demo content.

Now we’ll step through the process.

https://fonts.gstatic.com/experimental/incxfer_demo

For the purposes of this demonstration, I set the following options:

1.​ Playfair Display from the font dropdown
2.​ Brotli Shared Dictionary (quality 9)
3.​ FontTools for the subsetter
4.​ Yes to Retaining Glyph IDs

Basically I’ve chosen a font that I like, selected one of the more promising patch formats,
selected the subsetter that seems to work nicely with retaining glyph IDs (which seems to
provide a useful combination of results). Finally, I’ve added a paragraph of text.

Thank you, Text

Once I hit the ‘Add Text’ button, you’ll see the resulting comparison of font data delivered, and
the demo text rendered below. In the bar graphs, the top line represents the currently served
complete font file. The line we’re most interested in is the subsetted ‘patch file’ on the 3rd line. In
this case it’s showing that the full file is 18.1kb, and the subsetted patch is only 8.5kb. That’s
less than half the full file, and overall savings on larger font files could be even more dramatic.

Now we can add more text and see what the incremental transfer would be.

I’ve cleared the text area and pasted in another paragraph of text, and once again clicked the
‘Add Text’ button.

Now it gets interesting
This is, as the kids say, where it gets lit. Adding
another paragraph of text only resulted in an
additional patch of 1kb! I’ve tried various
experiments, and even adding three more
lengthy paragraphs only resulted in 3.7kb getting
downloaded, and then another 1.7kb. While still
clearly very early days, the promise of where
we’re headed is substantial. I’m hoping that we’ll
see an updated demo relatively soon that will
include a variable font to test as well.

At the moment the only examples I have to show are for Western language fonts. Where this will
really shine is with languages like Chinese, Japanese, Arabic, Vietnamese, and other more
complicated languages with much larger sets of glyphs. Think of being able to subset a 20MB
font down to even a few hundred KB or less, especially with subsequent page loads. It will be
the difference between using web fonts and better typography or not.

Couple that capability with variable fonts, and the combination could be simply transformative
for the design possibilities on sites using those languages. After years of promise shackled to
performance constraints, this will be nothing short of revolutionary.

As soon as we figure it out.

Stay tuned! There’s huge support from a bunch of organizations with loads of super-talented
engineers and designers focused on this challenge. I’m confident that amazing things will come
of it before too long. As soon as there has been enough defined to create a forum for discussion
on the W3C Github account, I’ll be sure to let you know. The web is for all of us, by all of us.
Your input will be much needed, and most welcome!

	Removing a critical roadblock: tackling the web font performance problem
	Boon & bottleneck
	Setting the stage
	It’s all in the name
	The concept, proven
	Thank you, Text
	Now it gets interesting

