Linear Memory Inspector

Attention: Externally visible, non-confidential
Author: kimanh@chromium.org

Status: Done
Created: 2020-10-07 / Last Updated: 2020-11-19

One-page overview

Summary

This design doc outlines the design proposal for the implementation of the Linear Memory Inspector
for inspecting ArrayBuffers (in particular WebAssembly .Memorys). First and foremost, this is for
developers to inspect the Wasm memory of a Wasm instance. The memory inspector allows the
developer to view, navigate and inspect the values in the memory.

Platforms
Desktop, Android.

Team

kimanh@chromium.org
bmeurer@chromium.org
petermueller@google.com for UX design

Tracking issue
crbug.com/1110202

Value proposition

A Linear Memory Inspector can help the developer to better debug and understand the underlying
Wasm application. Up to date, the Wasm memory is only shown as a UInt8Array in the scope view,
without any way to properly inspect and understand the raw values. The inspector offers a way to
navigate these values, select values and interpret them as different types, such that the developer can
make sense of what is contained in the memory.

Code affected

DevTools Front-End; Sources View



mailto:kimanh@chromium.org
mailto:kimanh@chromium.org
mailto:bmeurer@chromium.org
mailto:petermueller@google.com
https://bugs.chromium.org/p/chromium/issues/detail?id=1110202

Signed off by

Name Write (not) LGTM in this row
bmeurer@chromium.org LGTM
jacktfranklin@chromium.org LGTM
alexrudenko@chromium.org LGTM
leese@chromium.org LGTM
hwi@chromium.org LGTM

Core user stories

As a developer | want to be able to view the Wasm memory and inspect its values. This includes
being able to navigate the memory and to be able to view different interpretations of selected
memory values.

Design

UX Design

For the complete UX design, see UX deck (Google internal doc, not externally shared)

Implementation Design

The design of the memory inspector is described in the following, split up into two parts: first, the web
components for the Ul, and second, the change in the devtools front_end that are required to display
and interact with the inspector within DevTools.

1. The Linear Memory Inspector Web Components and their data
synchronization on updates

The Linear Memory Inspector will make use of three web components, as outlined below:


https://docs.google.com/presentation/d/1wu5aYkJ6CuannTo0JWO0tfFPLaoSdlBNox49f3c-eKQ/edit?usp=sharing

& Elements  Console  Sources  Network  Performance  Memory  Application  Security  Lighthouse @012 o582 03
Page  Filesystem » 4 show-wasm.html  Memory (show-wasm-1) x PD a2 1 o g ©
v [ top » Label
¥ (O wasm-dgb-stories-netlity.app 5 ¢ {+bopoaeAe ? e c v Call Stack
I show-wasm.html ppepeose | 3C 73 76 67 20 78 6D 6C 6E 73 3D 22 68 PNG ot paused
main js 77 77 2E 77 33 2E 6F 72 67 IHDR b F
76 67 22 20 68 65 69 67 68 1{.0 ¥ Scope DWARF
show- Ll
‘e Show-wasm-1.wasm 22 20 76 69 65 77 42 6F 78 pHY s % v [ parameters
's Show-wasm-2.wasm 34203234 22207769 64 % IR$D sR arge: nt 1
78 22 20 66 69 6C 6C 30 22 GB.®I @ g argv: float 32,522
22 3E3C 70 61 74 68 20 64 AMA ES oa » [@ Global
32 34 76 32 34 48 30 TA 22 7aIDATx. i arge: int 1
6E 6F GE 65 22 2F 3E 3C 70 1E0Cg7. . 0.2 argv: float 32.522
4D 35 20 32 30 56 35 68 32 H.Hé Do. . H.® miscal
76 36 68 32 56 35 63 3@ 2D QR Eras.+. e result: int 100
20 32 20 32 2D 32 68 20 33 sws . 0.]z0.8 .
34 20 31 2E 38 34 20 31 32 ésiapob v Breakpoints
20 31 73 2D 32 2E 34 2E 38 y'+iM}+§ }a show-wasm-1.wasm:0x23
32 48 35 63 20 31 2E 31 20 P{} tl]?LI-Yl‘
32203276 31356330 20 26a2ls.LEI.=0 * XHR/fetch Breakpoints
20 3220 32 68357620 32 M.<01.90.1Y>» |, pOM Breakpoints
37 63 2E 35 35 20 30 20 31 0  el«.&PY SEETT
3173 20 2E 34 35 20 31 2D » i, pu oba bistenars
34 3520 31 20 31 20 2E 34 pppun¥eols; R |» EventListener Breakpoints
ppEPO14e | 20 31 2D 31 7A 6D 39 20 39 2E 35 6C 31 Lo hype.idl
Little endian ¥ ]
Integer 8-bit dec +137 +-119
Integer 16-bit dec + 20817 £ 20617
Integer 24-bit  hex  + Ox23F200 = Ox23F200 o
Float 16-bit sci 1.3765e+4
Float 32-bit dec  2.061752
Zogloay !

Figure 1: The Linear Memory Inspector view

1. The main byte viewer (LinearMemoryViewer),
2. The navigation (LinearMemoryNavigator), and
3. The value interpreter (LinearMemoryValueInterpreter).

The LinearMemoryValuelnterpreter renders the settings toolbar (for changing endianness and values
to show, as well as one of two subcomponents (depending on whether the settings are currently

changed or not):

The first subcomponent will be the ValueInterpreterDisplay subcomponent, which displays the

selected values with

Little endian v

Integer 8-bit
Integer 16-bit @ dec

Integer 24-bit
Float 16-bit
Float 32-bit

Boolean

their configuration:

+ 137
+ 20617
hex  + 0x23F200

Ly

Decimal
Octal

+-119
+ 20617

dec

1

+ 0x23F200

Figure 2: The ValueInterpreterDisplay subcomponent

The second subcomponent will be the ValueInterpreterSettings subcomponent, which allows

the user to select the data types to show:




Little endian ¥

Integer
8-bit

16-bit
24-bit
(] 82-bit

Floating point
16-bit
32-bit
(] 64-bit

Other

Boolean
Char
[J string
[] Pointer

Figure 3: The ValueInterpreterSettings subcomponent

front_andfinear_mamary_inspaclonLineailemondnapecion s

front_endilinear_mamary_| Inm:mmuﬂmm‘uﬁmru
igalonis

front_sndilinear_memary_inspaclonLi

h‘ml ardilinear_ramany_ Inmmmmmnﬁfﬂmlmmrw

Linearbemoryinspector
<component=

- wiaw(Config:
ValueTypehoda>
- history: SimpleHistaryManager

- Mamary: ulnﬁ.ﬁrm_r
- address: number
= witlueTypes: VialueType]]

Mag=\aluaType,

l'

Figure 3: Web components

LinearMemony\iewer LinearMemoryNavigator LimearMemonyaluelnterpreter
<component= <component= <componants
- MEmory: uintBAmeay - address: number - walua: ArrayBuffer
- addresa: number - valuaTypes: ValueTypea]]
= viewConfig; Map<\iskmType,
ValusTypehioda=
fronl_andilinear mamary_inspacionlineaflermoeryinspeciorUtls. is
8 e Eee o ValuelnterpreterDisplay ValuelnterpreterSettings
<component= <gomponant=
ValueType ValueTypeMode
<enum=> =gnum=
Initd, Decimal,
Inl18, Hexadecimal,
Int3z2, Otal,
Intid, Scientific,
Float3z, FixedPaint
Floathd,
Boolean,
String.
Painler

In the following is a brief explanation on what the components do. Note that the event types
mentioned below are not explicitly included as classes in Figure 3.




The LinearMemoryViewer

The linear memory viewer shows an extract of the current memory (Smemory). Its address (Saddress)
determines which part of the memory is currently shown. The bytes in the view are going to be
wrapped at 4 byte boundaries.

This component triggers a :

e AddressChangedEvent if the user selects a byte in the current view.

The LinearMemoryNavigator

The linear memory navigator allows the navigation through the current memory. This includes
navigating to the next/previous page, returning to previously selected addresses and input-ing the
next address to view. It stores the current address in Saddress.

This component triggers a

PageNavigationEvent (on navigating the page),
AddressChangedEvent (on typing in an address),
RefreshEvent (on clicking refresh), or a
HistoryNavigationEvent (on clicking on backward/forward).

The LinearMemoryValuelnterpreter

The linear memory value interpreter shows the current value of the current address as different types.
These types can be selected in the settings view (see Figure 2).

It keeps an ArrayBuffer (Svalue) of the current address in order to be able to render different types.
The size of that ArrayBuffer is the maximum number of bytes that we want to interpret as one
value. The types that should be rendered are stored in SvalueTypes, and their viewing mode (hex,
oct, dec, sci) is defined in a configuration map (SviewConfig).

This component triggers a

e ValueTypeToggledEvent (on toggling the types to be included or not), and a
e ViewingModeChangedEvent (on changing the viewing mode).

The LinearMemoryValuelnspector

The LinearMemoryInspector component renders the three subcomponents mentioned above. It
keeps the state of the linear memory inspector and delegates the rendering to its subcomponents.
Therefore, all events from its subcomponents are handled within this parent component. For example,
updating the address in the LinearMemoryNavigator will cause an AddressChangedEvent, thatis
handled by the LinearMemoryInspector. Consequently, it will update the address field and trigger a
re-render.



User LinearMemoryNavigator LinearMemorylnspector

|:| addEventListener('address-changed’, D

this.addressChanged|..))

I

Editing address input
addressChanged(event)

S

i data(address, ..)

Figure 4: Sequence diagram for editing the address

LinearMemoryinspectorUtils
Contains the ValueType, and the ValueTypeMode.
For all integer types, the ValueType that is allowed is:

e Decimal
e Octal
e Hexadecimal

For all float types, the ValueType that is allowed is:

e Scientific
e FixedPoint

Strings and Pointers do not have any value type assigned.

2. DevTools Front-end changes required to show the Linear Memory
Inspector

As for the MVP, we first want to show the Linear Memory Inspector upon a right-click on the Wasm
memory:



x\+ —

wasm-dbg-stories.netlify.app/scopes.htm| “ @ » e H
- .
~ Y ﬂ Elements Console Sources Network Performance Memory Application Security Lighthouse 0 : X
Page » i [[4] scopes.wasm X CINN VO S ve O
v [ top (module ) ) ) ) = © Paused on breakpoint
. £ (global $imports.global (;0;) (import "imports" "global") (mut i32))
v & wasm-dbg-stories.netlify (memory $memory@ 1) » Watch
. scopes.html (func $foo (;0;) (export "foo") (param $i32 (;60;) i32) (result i32)
(local $i64 var (;1;) i64) (local $f32 var (;2;) 32) (local $f64 var (;3;) f64) v Call Stack
[ scopes.wasm 0x042 i64.const 9221120237041096 »
0x04b local.set $i64 var oo scopes.wasm:0x5f
0x04d f32.const 5.5 anonymous; scopes.html:10
0x052 local.set $f32 var ( y ) e
0x054 f64.const 2.23e-11 await in (anonymous) (async)
0x05d local.set $f64 var
0x05F alobal.c Sorts.global (anonymous) scopes.html:11
0x061 local.get $i32 v Scope
0x063 i32.add
0x064 ) v Module
) » globals: {imports.global: 2..
» instance: Instance {} d
> MEMArB . intOArraw PPYTEPRY
v Loca Copy property path
f;z Add property path to watch

i
i
» Stack
v Breakpoints

3
64 Storeas global variable

scopes.wasm:0x5f |
» XHR/fetch Breakpoints

» DOM Breakpoints

» Global Listeners

» Event Listener Breakpoints

Line 12, Column 1 Coverage: n/a \

“ »

Figure 5: Entering the Linear Memory Inspector via Scope View

The Linear Memory Inspector is then shown as a drawer at the bottom of DevTools:

] DevTools - wasm-dbg-stories.netlify.app/scopes.html - @ x
[ ﬂ Elements Console Sources Network Performance Memory Application Security Lighthouse Q :
Page » i [[{ scopes.wasm % DINN [ VO S S o ve @
v [ top (module _ = © Paused on breakpoint
. y (global $imports.global (;0;) (import "imports" "global") (mut i32))
v & wasm-dbg-stories.netlify (memory $memory® 1) » Watch
. scopes.html (func $foo (;0;) (export "foo") (param $i32 (;0;) i32) (result i32)
pe: s :
(local $i64 var (;1;) i64) (local $f32 var (;2;) f32) (local $f64 var (;3;) f64) v Call Stack
| scopes.wasm 0x042 i64.const 9221126237041090
0x04b local.set $i64 var » foo scopes.wasm:0x5f
0x04d f32.const 5.5
0x052 local.set $f32 var (anonymous) - scopes.html10
0x054 f64.const 2.23e-11 await in (anonymous) (async)
0x05d local.set $f64 var html:11
| ox05f ) global.get $imports.global (anonymous) scopes.htm
0x061 local.get $132 v Scope
0x063 i32.add
0x064 ) v Module

) » globals: {imports.global:

vinstance: Instance

- exports: (...)
. Line 12, Column 1 Coverage: n/a » _proto_: webAssembly.I.‘
» memarvA: IlintRArravlRAS52A)

: Console Memory Inspector X
Title x

5 e < > (¢] Little endian v ]

0 14 1E 28 3C 14 2D 17 6C 2B 06 37 38 2B 14 1E 28 3C 14 78 Itegerg:biticcion 2
g0 goC<o-0.+. +00(<D Integer 16-bit dec 5150 5150

00000012 2D 17 6C 2B 06 37 38 2B 14 1E 28 3C 1420 1706C 2B06 -[ .+ .78 +00(<0-0. + .
00000024 37 38 2B 14 1E283C 14 2017 60C2B 06373828 141E 78+ (00 (<0-0.+.78+00
)0000036 28 3C 14 2D 17 0C 2B 86 37 38 2B 14 1E283C14 2017 (<[-0.+.78+00(<0-0
00000048 OC 2B 06 37 38 2B 14 1E 28 3C 142D 1706C 2806 3738 .+ .78+(00(<0-0.+.78
0000054 2B 14 1E 28 3C 14 2D 17 ©OC 2B 06 37 38 2B 14 1E 283C + (0 (<0-0.+.78+00( <
0000006C 14 2D 17 6C 2B 06 37 38 28 14 1E28 3C 142017 OC28 [ -0 .+.78+00(<0-0.+
)000007E  ©6 37 38 2B 14 1E 28 3C 14 2D 17 6C 2B 063738 2814 .78+ ([0 (<0-0.+ .78+

W

Figure 6: Linear Memory Inspector included as a drawer at the bottom of DevTools

Integet 64-bit dec 1449640368561526540 144964036856152



Figure 7 shows a class diagram designed to show the Linear Memory Inspector as suggested above:

front_end/linear_memary_inspector/LinearMemorylnspectorPane js:

LineartemoryinspectorPanalmpl
=singleton= ELEHEY

- tabbedPane: TabbedPane - view:
- tabld ToMemaryView: Map<string, LingarMemorylnspectorPanelmpl
LineardemoryinspectoryView=
+ instance() :
LinearMemoryinspectorPanelmpl . SimpleView

b <interface>

LinearMemarylnspectorview LazyUintBArray
] <interface>

- memory: LazyUint8Array
- memorylnspector:
LinearMemarylnspector

+ getRanga(start, end): Uint8Array
+ length(): number

front_end/sources/ScopeChainSidebarPane. s

OpenLinearMemorylnspector  r----------- g Cmtiﬁmﬁ:};rfwder
RemoteAmayWrapper
- remoteArray: RemoteArray LazyUintBArray
N <interface=

Figure 7: Diagram with classes required to show the Linear Memory Inspector on a right click of the
Wasm memory in the scope view

LinearMemorylnspectorPaneimpl

The LinearMemoryInspectorPaneImpl shows the tabbed pane at the bottom of DevTools. It is
opened upon a call to
UI.ViewManager.ViewManager.instance().showView(‘linear-memory-inspector’). The
ViewManager accesses the LinearMemoryInspectorPaneImpl through the Wrapper class. The
wrapper is necessary in order to ensure that the LinearMemoryInspectorPaneImpl is a Singleton,
which is not instantiated through the constructor, but rather through an instance() method.

Bookkeeping of tabs and history

The LinearMemoryInspectorPaneImpl needs to keep track of all the opened
LinearMemorylnspectorViews. For this, it keeps a StabIdToMemoryView map for events, such as
closing the tab. The StabId will be the SscriptId.

The LinearMemoryInspector records the history of the addresses visited in order to be able to
record the history for navigated addresses, and to support navigation through history.



OpenLinearMemoryinspector NEW

Opening the LinearMemorylnspectorPanelmpl through the Scope View Context Menu

The OpenLinearMemoryInspector class within the ScopeChainSidebarPane. js (see Figure 7)
implements the Ul.ContextMenu.Provider class that is required to populate the context menu on a
right click within the Scope View.

On selecting ‘Inspect memory’ from the context menu, the OpenLinearMemoryInspector gets the
LinearMemoryInspectorPaneImpl instance and forwards the information on the RemoteObject that
wraps the Uint8Array, along with other information on the current call stack.

A call to Ul.ViewManager.ViewManager.instance().showView('linear-memory-inspector’) finally opens
a LinearMemorylnspector (simplified) through the wrapper:

LinearMemorylnspactor-
Panelmpl

T

! Selecting L showil: .
| inspact memary' | (k u show();
1 H |
i H i

i

User ViewManager Wrapper

Figure 8: Simplified sequence diagram to open a LinearMemorylnspectorView from the Scope View

LazyUint8Array NEW

The LazyUint8Array is an interface that wraps (some form of) a Uint8Array. In this particular use case
we actually do not have a Uint8Array in the scope view, but instead a RemoteObject that represents a
Uint8Array. This interface is a wrapper that provides methods to selectively retrieve a Uint8Array for a
certain range. The reason for using a LazyUint8Array is outlined in part 3.

Things left for later

There are several features that | haven't investigated yet, but fall into the responsibility of the
LinearMemoryInspectorPaneImpl

e Pulling the latest memory on refresh. We will store the SscriptId as StablId, and should be
able to pull the latest data from that.

e Closing the views; when do we want to close the view? Whenever the corresponding source
code is closed?

3. Ensuring that speed and memory consumption are independent of the
actual buffer size NEWM

The incoming buffer for the Wasm memory can be large. Currently, the buffer is transferred to the
Chrome DevTools front-end through a RemoteObject. Unpacking each element requires to separately



request each element from the back-end, which incurs a significant overhead (and thus a long, visible
delay for the user).

Instead of requesting all elements within the buffer, we only want to access those that are relevant,
i.e. those that we show in the view. In order to make the LinearMemoryViewer deal with only showing
a portion of the actual buffer, the LinearMemoryViewer now also takes in a memoryOffset:

LinearMemorylnspector
<component>

- memory: uint8Array

- memoryOffset: number NEW

- address: number

- valueTypes: ValueType(]

- viewConfig: Map<ValueType,
ValueTypeMode>

- history: SimpleHistoryManager

LinearMemoryViewer
<component>

- memory: uint8Array
- memoryOffset: number NEW
- address: number

The memoryOffset defines the index of the first element in the memory within the original Uint8Array.
This way, the LinearMemoryViewer can still correctly render the address of the bytes in the view.

Since the LinearMemorylnspector and the LinearMemoryViewer only see a portion of the actual
Uint8Array, changes need to be introduced in order to allow for resizing events (now showing more
elements than currently available) or for navigation changes.

The LinearMemoryInspector is responsible to request more memory if required. On navigation
changes and resize events, the LinearMemoryInspector requests a different Uint8Array range from
the LinearMemoryView by sending a MemoryRequestEvent:



User

LinearMemaoryNavigator

LinearMemorylnspector

LinearMemoryinspectoriew

Mavigate page

Triggars:

FageMavigationEvent

|.—| Triggers:

1 RequesidemaryEvant
i

]

L] datal.)

As a response, the LinearMemoryView will update the Uint8Array and set the data on the
LinearMemoryInspector, which will trigger a re-render.

The LinearMemoryInspectorView keeps a LazyUint8Array instead of the Uint8Array to process
these requests. After receiving the request for memory, it will use the LazyUint8Array instance in
order to get the requested Uint8Array range and set the new data on the LinearMemorylnspector.

front_end/linear_memory_inspectorLinearMemoryinspectorPane.js:

LinearfemorylnspectorPanelmpl
=singleton=

- tabbedPane: TabbedPane
- tabldToMemoryView: Map-<string,
LinearbemoryInspectoryview=

+ instance() :
LineardemoryinspectorPanelmpl

Wrapper

- ViEw:
LinearMemaorylnspectorPanelmpl

SimpleView
<interface>

I

LinearMemaorylnspectorview

- memory: LazyUint8Array NEW
- memorylnspector:
LinearMemaorylnspector

In this particular use case the LazyUint8Array wraps a RemoteObject, see RemoteArrayWrapper:



front_end/sources/ScopeChainSidebarPane.js:

RemoteArrayWrapper

- remoteArray: RemoteArray LazyUint8Array

<interface=

Rollout plan

1. Experiment first, gated behind the Wasm Debugging Experiment
2. Waterfall

Core principle considerations

Speed

The linear memory inspector is only showing one excerpt of the memory at a time. The memory
consumption should be independent of the actual size of the memory to be inspected. This is
explored above in this section.

Security

The Linear Memory Inspector will be gated behind the Wasm Dwarf experiment for now.

Simplicity
Originally the proposal was to show the Linear Memory Inspector within the SourcesView, i.e. as a tab
next to the sources:



™ E| Elements  Console Sources Network Performance Memory Application Security Lighthouse 912 5 @2 ¢ PoX
Page Filesystem % [4 show-wasm.html Memory (show-wasm-1) X 0l 1] Qﬁ 0
¥ O twop » Label
* (¢ wasm-dgb-stories-netlify.app S % DIOREAD : o c ¥ Call Stack
I show-wasm.html 3C 73 76 67 20 78 6D 6C 6E 73 3D 22 68 PNG
main.js 3A2F 2F 77 77 77 2E 77 33 2E 6F 72 67 IHDR b F
30 30 2F 73 76 67 22 20 6B 65 69 67 68 1{.0 ¥ Scope DWARF )
how- -1
o SnOwW-wasm-1.wasm 32347078 22207669 6577 426F 78 . pHYs % v 0 Parameters
o Show-wasm-2.wasm 20 30 20 32 34 20 32 34 22 20 77 69 64 %. 1R 5 8 sR argc: t1
22 32 34 70 78 22 20 66 69 6C 6C 30 22 GB.®I . é 9 argv: float 32,522
30 30 30 30 22 3E 3C 70 61 74 68 20 64 AMA * ia v @ Global
30 20 30 BB 32 34 76 32 34 48 30 TA 22 7a IDATX i arge: t1
6C 6C 3D 22 6E 6F 6E 65 22 2F 3E 3C 70 1E0CgT. . 0.2 argu: float 32.522
20 64 3D 22 4D 35 20 32 38 56 3568 32 H. He Do H.® |y @ Local
ppopoeA? 38 56 35[68] 76 36 68 32 56 35 63 38 2D QR [ras.» e result: int 100
31 20 2E 39 2D 32 20 32 2D 32 68 2D 33 oW 0.]lzo0.8B -
43 31 33 2E 34 20 31 2E 38 34 20 31 32 éxiGpop e
3120 31 31 20 31 73 2D 32 2E 34 2E 38 y’ +49)}+y.  }& T —————
2E 38 32 20 32 48 35 63 2D 31 2E 31 20 LR ‘-GE’LJ:'-‘Y' .
20 2E 39 20 32203276 31356330 20 26ais.L&f.=0 |»XHR/Aetch Breakpaints
2E 39 20 32 20 32 20 32 68 357620 32 M.<UI . 90.1iY» | »pDOM Breakpoints
6D 36 2D 31 37 63 2E 35 35 20 30 28 31 8 . &0 épl b Gictsd Lbterars
35 20 31 20 31 73 2D 2E 34 35 20 31 2D » é PP :
20 31 2D 2E 34 35 2D 31 2D 31 20 2E 34  uppunYeuldo; B |»EventListener Breakpoints
20 31 2D 31 7A 6D 39 20 39 2E 35 6C 31 Lo 43pe.1d1
Little endian ¥ ]
Integer 8-bit dec +137 -119
Integer 16-bit lac + 20817 20617
Integer 24-bit + Ox23F200 0x23F200 o
Float 16-bit 8C 1.3765e+4
Float 32-bit dec 2.061752
Boolean 1
st

Figure 9: Showing the linear memory inspector within the Source View

Extending the SourcesView turns out to be difficult to accomplish from an architectural perspective.
The SourcesView and the TabbedEditorContainer are written such that they expect to only deal with
UlSourceCode objects.

For now, we therefore chose to open the Linear Memory Inspector at the bottom as a drawer instead.
This may also have the advantage of still being able to view the source code while inspecting the
memory.

Accessibility

The linear memory inspector should support keyboard navigation and accessibility to screenreaders.

Testing plan

Unit tests and e2e tests

Follow up work

This is the design doc for the MVP, afterwards we still need to extend it to support more features.

Other use cases of the Linear Memory Inspector

Tracking bug: crbug.com/1144654

The linear memory inspector can also be reused in different parts of the Chrome DevTools:


http://crbug.com/1144654

e forinspecting binary responses in the Network tab (including the Web Socket view)

Extension of the Linear Memory Inspector

One thing to think about is to also support Blobs.



	Linear Memory Inspector 
	One-page overview 
	Summary 
	Platforms 
	Team 
	Tracking issue 
	Value proposition 
	Code affected 

	Signed off by 
	Core user stories 
	As a developer I want to be able to view the Wasm memory and inspect its values. This includes being able to navigate the memory and to be able to view different interpretations of selected memory values. 
	Design 
	UX Design 
	Implementation Design 
	1. The Linear Memory Inspector Web Components and their data synchronization on updates 
	The LinearMemoryViewer 
	The LinearMemoryNavigator 
	The LinearMemoryValueInterpreter 
	The LinearMemoryValueInspector 
	LinearMemoryInspectorUtils 

	2. DevTools Front-end changes required to show the Linear Memory Inspector  
	LinearMemoryInspectorPaneImpl 
	Bookkeeping of tabs and history  

	OpenLinearMemoryInspector NEW 
	Opening the LinearMemoryInspectorPaneImpl through the Scope View Context Menu 

	LazyUint8Array NEW 
	Things left for later 

	3. Ensuring that speed and memory consumption are independent of the actual buffer size NEW 

	Rollout plan 
	Core principle considerations 
	Speed 
	Security 
	Simplicity 
	Accessibility 

	Testing plan 
	Follow up work 

