
Linear Memory Inspector
Attention: Externally visible, non-confidential​
Author: kimanh@chromium.org​
Status: Inception | Draft | Accepted | Done​
Created: 2020-10-07 / Last Updated: 2020-11-19

One-page overview

Summary
This design doc outlines the design proposal for the implementation of the Linear Memory Inspector
for inspecting ArrayBuffers (in particular WebAssembly.Memorys). First and foremost, this is for
developers to inspect the Wasm memory of a Wasm instance. The memory inspector allows the
developer to view, navigate and inspect the values in the memory.

Platforms
Desktop, Android.

Team
kimanh@chromium.org​
bmeurer@chromium.org​
petermueller@google.com for UX design

Tracking issue
crbug.com/1110202

Value proposition
A Linear Memory Inspector can help the developer to better debug and understand the underlying
Wasm application. Up to date, the Wasm memory is only shown as a UInt8Array in the scope view,
without any way to properly inspect and understand the raw values. The inspector offers a way to
navigate these values, select values and interpret them as different types, such that the developer can
make sense of what is contained in the memory.

Code affected
DevTools Front-End; Sources View

mailto:kimanh@chromium.org
mailto:kimanh@chromium.org
mailto:bmeurer@chromium.org
mailto:petermueller@google.com
https://bugs.chromium.org/p/chromium/issues/detail?id=1110202

Signed off by
Name Write (not) LGTM in this row

bmeurer@chromium.org LGTM

jacktfranklin@chromium.org LGTM

alexrudenko@chromium.org LGTM

leese@chromium.org LGTM

hwi@chromium.org LGTM

Core user stories
As a developer I want to be able to view the Wasm memory and inspect its values. This includes
being able to navigate the memory and to be able to view different interpretations of selected
memory values.

Design

UX Design
For the complete UX design, see UX deck (Google internal doc, not externally shared)

Implementation Design
The design of the memory inspector is described in the following, split up into two parts: first, the web
components for the UI, and second, the change in the devtools front_end that are required to display
and interact with the inspector within DevTools.

1. The Linear Memory Inspector Web Components and their data
synchronization on updates
The Linear Memory Inspector will make use of three web components, as outlined below:

https://docs.google.com/presentation/d/1wu5aYkJ6CuannTo0JWO0tfFPLaoSdlBNox49f3c-eKQ/edit?usp=sharing

Figure 1: The Linear Memory Inspector view

1.​ The main byte viewer (LinearMemoryViewer),
2.​ The navigation (LinearMemoryNavigator), and
3.​ The value interpreter (LinearMemoryValueInterpreter).​

The LinearMemoryValueInterpreter renders the settings toolbar (for changing endianness and values
to show, as well as one of two subcomponents (depending on whether the settings are currently
changed or not):

The first subcomponent will be the ValueInterpreterDisplay subcomponent, which displays the
selected values with their configuration:

 Figure 2: The ValueInterpreterDisplay subcomponent

The second subcomponent will be the ValueInterpreterSettings subcomponent, which allows
the user to select the data types to show:

​ Figure 3: The ValueInterpreterSettings subcomponent

Figure 3: Web components

In the following is a brief explanation on what the components do. Note that the event types
mentioned below are not explicitly included as classes in Figure 3.

The LinearMemoryViewer
The linear memory viewer shows an extract of the current memory ($memory). Its address ($address)
determines which part of the memory is currently shown. The bytes in the view are going to be
wrapped at 4 byte boundaries.

This component triggers a :

●​ AddressChangedEvent if the user selects a byte in the current view.

The LinearMemoryNavigator
The linear memory navigator allows the navigation through the current memory. This includes
navigating to the next/previous page, returning to previously selected addresses and input-ing the
next address to view. It stores the current address in $address.

This component triggers a

●​ PageNavigationEvent (on navigating the page),
●​ AddressChangedEvent (on typing in an address),
●​ RefreshEvent (on clicking refresh), or a
●​ HistoryNavigationEvent (on clicking on backward/forward).

The LinearMemoryValueInterpreter
The linear memory value interpreter shows the current value of the current address as different types.
These types can be selected in the settings view (see Figure 2).​
It keeps an ArrayBuffer ($value) of the current address in order to be able to render different types.
The size of that ArrayBuffer is the maximum number of bytes that we want to interpret as one
value. The types that should be rendered are stored in $valueTypes, and their viewing mode (hex,
oct, dec, sci) is defined in a configuration map ($viewConfig).

This component triggers a

●​ ValueTypeToggledEvent (on toggling the types to be included or not), and a
●​ ViewingModeChangedEvent (on changing the viewing mode).

The LinearMemoryValueInspector
The LinearMemoryInspector component renders the three subcomponents mentioned above. It
keeps the state of the linear memory inspector and delegates the rendering to its subcomponents.
Therefore, all events from its subcomponents are handled within this parent component. For example,
updating the address in the LinearMemoryNavigator will cause an AddressChangedEvent, that is
handled by the LinearMemoryInspector. Consequently, it will update the address field and trigger a
re-render.

Figure 4: Sequence diagram for editing the address

LinearMemoryInspectorUtils
Contains the ValueType, and the ValueTypeMode. ​
For all integer types, the ValueType that is allowed is:

●​ Decimal
●​ Octal
●​ Hexadecimal

For all float types, the ValueType that is allowed is:

●​ Scientific
●​ FixedPoint

Strings and Pointers do not have any value type assigned.

2. DevTools Front-end changes required to show the Linear Memory
Inspector
As for the MVP, we first want to show the Linear Memory Inspector upon a right-click on the Wasm
memory:

\

Figure 5: Entering the Linear Memory Inspector via Scope View

The Linear Memory Inspector is then shown as a drawer at the bottom of DevTools:

Figure 6: Linear Memory Inspector included as a drawer at the bottom of DevTools

Figure 7 shows a class diagram designed to show the Linear Memory Inspector as suggested above:

Figure 7: Diagram with classes required to show the Linear Memory Inspector on a right click of the
Wasm memory in the scope view

LinearMemoryInspectorPaneImpl
The LinearMemoryInspectorPaneImpl shows the tabbed pane at the bottom of DevTools. It is
opened upon a call to
UI.ViewManager.ViewManager.instance().showView(‘linear-memory-inspector’). The
ViewManager accesses the LinearMemoryInspectorPaneImpl through the Wrapper class. The
wrapper is necessary in order to ensure that the LinearMemoryInspectorPaneImpl is a Singleton,
which is not instantiated through the constructor, but rather through an instance() method.

Bookkeeping of tabs and history
The LinearMemoryInspectorPaneImpl needs to keep track of all the opened
LinearMemoryInspectorViews. For this, it keeps a $tabIdToMemoryView map for events, such as
closing the tab. The $tabId will be the $scriptId.

The LinearMemoryInspector records the history of the addresses visited in order to be able to
record the history for navigated addresses, and to support navigation through history.

OpenLinearMemoryInspector NEW

Opening the LinearMemoryInspectorPaneImpl through the Scope View Context Menu
The OpenLinearMemoryInspector class within the ScopeChainSidebarPane.js (see Figure 7)
implements the UI.ContextMenu.Provider class that is required to populate the context menu on a
right click within the Scope View.

On selecting ‘Inspect memory’ from the context menu, the OpenLinearMemoryInspector gets the
LinearMemoryInspectorPaneImpl instance and forwards the information on the RemoteObject that
wraps the Uint8Array, along with other information on the current call stack.

A call to UI.ViewManager.ViewManager.instance().showView(‘linear-memory-inspector’) finally opens
a LinearMemoryInspector (simplified) through the wrapper:

Figure 8: Simplified sequence diagram to open a LinearMemoryInspectorView from the Scope View

LazyUint8Array NEW
The LazyUint8Array is an interface that wraps (some form of) a Uint8Array. In this particular use case
we actually do not have a Uint8Array in the scope view, but instead a RemoteObject that represents a
Uint8Array. This interface is a wrapper that provides methods to selectively retrieve a Uint8Array for a
certain range. The reason for using a LazyUint8Array is outlined in part 3.

Things left for later
There are several features that I haven’t investigated yet, but fall into the responsibility of the
LinearMemoryInspectorPaneImpl:

●​ Pulling the latest memory on refresh. We will store the $scriptId as $tabId, and should be
able to pull the latest data from that.

●​ Closing the views; when do we want to close the view? Whenever the corresponding source
code is closed?

3. Ensuring that speed and memory consumption are independent of the
actual buffer size NEW
The incoming buffer for the Wasm memory can be large. Currently, the buffer is transferred to the
Chrome DevTools front-end through a RemoteObject. Unpacking each element requires to separately

request each element from the back-end, which incurs a significant overhead (and thus a long, visible
delay for the user).

Instead of requesting all elements within the buffer, we only want to access those that are relevant,
i.e. those that we show in the view. In order to make the LinearMemoryViewer deal with only showing
a portion of the actual buffer, the LinearMemoryViewer now also takes in a memoryOffset:

The memoryOffset defines the index of the first element in the memory within the original Uint8Array.
This way, the LinearMemoryViewer can still correctly render the address of the bytes in the view.

Since the LinearMemoryInspector and the LinearMemoryViewer only see a portion of the actual
Uint8Array, changes need to be introduced in order to allow for resizing events (now showing more
elements than currently available) or for navigation changes.

The LinearMemoryInspector is responsible to request more memory if required. On navigation
changes and resize events, the LinearMemoryInspector requests a different Uint8Array range from
the LinearMemoryView by sending a MemoryRequestEvent:

As a response, the LinearMemoryView will update the Uint8Array and set the data on the
LinearMemoryInspector, which will trigger a re-render.

The LinearMemoryInspectorView keeps a LazyUint8Array instead of the Uint8Array to process
these requests. After receiving the request for memory, it will use the LazyUint8Array instance in
order to get the requested Uint8Array range and set the new data on the LinearMemoryInspector.

In this particular use case the LazyUint8Array wraps a RemoteObject, see RemoteArrayWrapper:

Rollout plan
1.​ Experiment first, gated behind the Wasm Debugging Experiment
2.​ Waterfall

Core principle considerations

Speed
The linear memory inspector is only showing one excerpt of the memory at a time. The memory
consumption should be independent of the actual size of the memory to be inspected. This is
explored above in this section.

Security
The Linear Memory Inspector will be gated behind the Wasm Dwarf experiment for now.

Simplicity
Originally the proposal was to show the Linear Memory Inspector within the SourcesView, i.e. as a tab
next to the sources:

Figure 9: Showing the linear memory inspector within the Source View

Extending the SourcesView turns out to be difficult to accomplish from an architectural perspective.
The SourcesView and the TabbedEditorContainer are written such that they expect to only deal with
UISourceCode objects.

For now, we therefore chose to open the Linear Memory Inspector at the bottom as a drawer instead.
This may also have the advantage of still being able to view the source code while inspecting the
memory.

Accessibility
The linear memory inspector should support keyboard navigation and accessibility to screenreaders.

Testing plan
Unit tests and e2e tests

Follow up work
This is the design doc for the MVP, afterwards we still need to extend it to support more features.

Other use cases of the Linear Memory Inspector

Tracking bug: crbug.com/1144654

The linear memory inspector can also be reused in different parts of the Chrome DevTools:

http://crbug.com/1144654

●​ for inspecting binary responses in the Network tab (including the Web Socket view)

Extension of the Linear Memory Inspector

One thing to think about is to also support Blobs.

	Linear Memory Inspector
	One-page overview
	Summary
	Platforms
	Team
	Tracking issue
	Value proposition
	Code affected

	Signed off by
	Core user stories
	As a developer I want to be able to view the Wasm memory and inspect its values. This includes being able to navigate the memory and to be able to view different interpretations of selected memory values.
	Design
	UX Design
	Implementation Design
	1. The Linear Memory Inspector Web Components and their data synchronization on updates
	The LinearMemoryViewer
	The LinearMemoryNavigator
	The LinearMemoryValueInterpreter
	The LinearMemoryValueInspector
	LinearMemoryInspectorUtils

	2. DevTools Front-end changes required to show the Linear Memory Inspector
	LinearMemoryInspectorPaneImpl
	Bookkeeping of tabs and history

	OpenLinearMemoryInspector NEW
	Opening the LinearMemoryInspectorPaneImpl through the Scope View Context Menu

	LazyUint8Array NEW
	Things left for later

	3. Ensuring that speed and memory consumption are independent of the actual buffer size NEW

	Rollout plan
	Core principle considerations
	Speed
	Security
	Simplicity
	Accessibility

	Testing plan
	Follow up work

