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One-page overview

Summary

This design doc outlines the design proposal for the implementation of the Linear Memory Inspector
for inspecting ArrayBuffers (in particular WebAssembly .Memorys). First and foremost, this is for
developers to inspect the Wasm memory of a Wasm instance. The memory inspector allows the
developer to view, navigate and inspect the values in the memory.

Platforms
Desktop, Android.

Team

kimanh@chromium.org
bmeurer@chromium.org
petermueller@google.com for UX design

Tracking issue
crbug.com/1110202

Value proposition

A Linear Memory Inspector can help the developer to better debug and understand the underlying
Wasm application. Up to date, the Wasm memory is only shown as a UInt8Array in the scope view,
without any way to properly inspect and understand the raw values. The inspector offers a way to
navigate these values, select values and interpret them as different types, such that the developer can
make sense of what is contained in the memory.

Code affected

DevTools Front-End; Sources View
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Core user stories

As a developer | want to be able to view the Wasm memory and inspect its values. This includes
being able to navigate the memory and to be able to view different interpretations of selected
memory values.

Design

UX Design

For the complete UX design, see UX deck (Google internal doc, not externally shared)

Implementation Design

The design of the memory inspector is described in the following, split up into two parts: first, the web
components for the Ul, and second, the change in the devtools front_end that are required to display
and interact with the inspector within DevTools.

1. The Linear Memory Inspector Web Components and their data
synchronization on updates

The Linear Memory Inspector will make use of three web components, as outlined below:


https://docs.google.com/presentation/d/1wu5aYkJ6CuannTo0JWO0tfFPLaoSdlBNox49f3c-eKQ/edit?usp=sharing

& Elements  Console  Sources  Network  Performance  Memory  Application  Security  Lighthouse @012 o582 03
Page  Filesystem » 4 show-wasm.html  Memory (show-wasm-1) x PD a2 1 o g ©
v [ top » Label
¥ (O wasm-dgb-stories-netlity.app 5 ¢ {+bopoaeAe ? e c v Call Stack
I show-wasm.html ppepeose | 3C 73 76 67 20 78 6D 6C 6E 73 3D 22 68 PNG ot paused
main js 77 77 2E 77 33 2E 6F 72 67 IHDR b F
76 67 22 20 68 65 69 67 68 1{.0 ¥ Scope DWARF
show- Ll
‘e Show-wasm-1.wasm 22 20 76 69 65 77 42 6F 78 pHY s % v [ parameters
's Show-wasm-2.wasm 34203234 22207769 64 % IR$D sR arge: nt 1
78 22 20 66 69 6C 6C 30 22 GB.®I @ g argv: float 32,522
22 3E3C 70 61 74 68 20 64 AMA ES oa » [@ Global
32 34 76 32 34 48 30 TA 22 7aIDATx. i arge: int 1
6E 6F GE 65 22 2F 3E 3C 70 1E0Cg7. . 0.2 argv: float 32.522
4D 35 20 32 30 56 35 68 32 H.Hé Do. . H.® miscal
76 36 68 32 56 35 63 3@ 2D QR Eras.+. e result: int 100
20 32 20 32 2D 32 68 20 33 sws . 0.]z0.8 .
34 20 31 2E 38 34 20 31 32 ésiapob v Breakpoints
20 31 73 2D 32 2E 34 2E 38 y'+iM}+§ }a show-wasm-1.wasm:0x23
32 48 35 63 20 31 2E 31 20 P{} tl]?LI-Yl‘
32203276 31356330 20 26a2ls.LEI.=0 * XHR/fetch Breakpoints
20 3220 32 68357620 32 M.<01.90.1Y>» |, pOM Breakpoints
37 63 2E 35 35 20 30 20 31 0  el«.&PY SEETT
3173 20 2E 34 35 20 31 2D » i, pu oba bistenars
34 3520 31 20 31 20 2E 34 pppun¥eols; R |» EventListener Breakpoints
ppEPO14e | 20 31 2D 31 7A 6D 39 20 39 2E 35 6C 31 Lo hype.idl
Little endian ¥ ]
Integer 8-bit dec +137 +-119
Integer 16-bit dec + 20817 £ 20617
Integer 24-bit  hex  + Ox23F200 = Ox23F200 o
Float 16-bit sci 1.3765e+4
Float 32-bit dec  2.061752
Zogloay !

Figure 1: The Linear Memory Inspector view

1. The main byte viewer (LinearMemoryViewer),
2. The navigation (LinearMemoryNavigator), and
3. The value interpreter (LinearMemoryValueInterpreter).

The LinearMemoryValuelnterpreter renders the settings toolbar (for changing endianness and values
to show, as well as one of two subcomponents (depending on whether the settings are currently

changed or not):

The first subcomponent will be the ValueInterpreterDisplay subcomponent, which displays the

selected values with
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Figure 2: The ValueInterpreterDisplay subcomponent

The second subcomponent will be the ValueInterpreterSettings subcomponent, which allows

the user to select the data types to show:
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Figure 3: The ValueInterpreterSettings subcomponent
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Figure 3: Web components
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In the following is a brief explanation on what the components do. Note that the event types
mentioned below are not explicitly included as classes in Figure 3.




The LinearMemoryViewer

The linear memory viewer shows an extract of the current memory (Smemory). Its address (Saddress)
determines which part of the memory is currently shown. The bytes in the view are going to be
wrapped at 4 byte boundaries.

This component triggers a :

e AddressChangedEvent if the user selects a byte in the current view.

The LinearMemoryNavigator

The linear memory navigator allows the navigation through the current memory. This includes
navigating to the next/previous page, returning to previously selected addresses and input-ing the
next address to view. It stores the current address in Saddress.

This component triggers a

PageNavigationEvent (on navigating the page),
AddressChangedEvent (on typing in an address),
RefreshEvent (on clicking refresh), or a
HistoryNavigationEvent (on clicking on backward/forward).

The LinearMemoryValuelnterpreter

The linear memory value interpreter shows the current value of the current address as different types.
These types can be selected in the settings view (see Figure 2).

It keeps an ArrayBuffer (Svalue) of the current address in order to be able to render different types.
The size of that ArrayBuffer is the maximum number of bytes that we want to interpret as one
value. The types that should be rendered are stored in SvalueTypes, and their viewing mode (hex,
oct, dec, sci) is defined in a configuration map (SviewConfig).

This component triggers a

e ValueTypeToggledEvent (on toggling the types to be included or not), and a
e ViewingModeChangedEvent (on changing the viewing mode).

The LinearMemoryValuelnspector

The LinearMemoryInspector component renders the three subcomponents mentioned above. It
keeps the state of the linear memory inspector and delegates the rendering to its subcomponents.
Therefore, all events from its subcomponents are handled within this parent component. For example,
updating the address in the LinearMemoryNavigator will cause an AddressChangedEvent, thatis
handled by the LinearMemoryInspector. Consequently, it will update the address field and trigger a
re-render.
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Figure 4: Sequence diagram for editing the address

LinearMemoryinspectorUtils
Contains the ValueType, and the ValueTypeMode.
For all integer types, the ValueType that is allowed is:

e Decimal
e Octal
e Hexadecimal

For all float types, the ValueType that is allowed is:

e Scientific
e FixedPoint

Strings and Pointers do not have any value type assigned.

2. DevTools Front-end changes required to show the Linear Memory
Inspector

As for the MVP, we first want to show the Linear Memory Inspector upon a right-click on the Wasm
memory:
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Figure 5: Entering the Linear Memory Inspector via Scope View

The Linear Memory Inspector is then shown as a drawer at the bottom of DevTools:
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Figure 6: Linear Memory Inspector included as a drawer at the bottom of DevTools

Integet 64-bit dec 1449640368561526540 144964036856152



Figure 7 shows a class diagram designed to show the Linear Memory Inspector as suggested above:

front_end/linear_memary_inspector/LinearMemorylnspectorPane js:

LineartemoryinspectorPanalmpl
=singleton= ELEHEY

- tabbedPane: TabbedPane - view:
- tabld ToMemaryView: Map<string, LingarMemorylnspectorPanelmpl
LineardemoryinspectoryView=
+ instance() :
LinearMemoryinspectorPanelmpl . SimpleView

b <interface>

LinearMemarylnspectorview LazyUintBArray
] <interface>

- memory: LazyUint8Array
- memorylnspector:
LinearMemarylnspector

+ getRanga(start, end): Uint8Array
+ length(): number

front_end/sources/ScopeChainSidebarPane. s

OpenLinearMemorylnspector  r----------- g Cmtiﬁmﬁ:};rfwder
RemoteAmayWrapper
- remoteArray: RemoteArray LazyUintBArray
N <interface=

Figure 7: Diagram with classes required to show the Linear Memory Inspector on a right click of the
Wasm memory in the scope view

LinearMemorylnspectorPaneimpl

The LinearMemoryInspectorPaneImpl shows the tabbed pane at the bottom of DevTools. It is
opened upon a call to
UI.ViewManager.ViewManager.instance().showView(‘linear-memory-inspector’). The
ViewManager accesses the LinearMemoryInspectorPaneImpl through the Wrapper class. The
wrapper is necessary in order to ensure that the LinearMemoryInspectorPaneImpl is a Singleton,
which is not instantiated through the constructor, but rather through an instance() method.

Bookkeeping of tabs and history

The LinearMemoryInspectorPaneImpl needs to keep track of all the opened
LinearMemorylnspectorViews. For this, it keeps a StabIdToMemoryView map for events, such as
closing the tab. The StabId will be the SscriptId.

The LinearMemoryInspector records the history of the addresses visited in order to be able to
record the history for navigated addresses, and to support navigation through history.



OpenLinearMemoryinspector NEW

Opening the LinearMemorylnspectorPanelmpl through the Scope View Context Menu

The OpenLinearMemoryInspector class within the ScopeChainSidebarPane. js (see Figure 7)
implements the Ul.ContextMenu.Provider class that is required to populate the context menu on a
right click within the Scope View.

On selecting ‘Inspect memory’ from the context menu, the OpenLinearMemoryInspector gets the
LinearMemoryInspectorPaneImpl instance and forwards the information on the RemoteObject that
wraps the Uint8Array, along with other information on the current call stack.

A call to Ul.ViewManager.ViewManager.instance().showView('linear-memory-inspector’) finally opens
a LinearMemorylnspector (simplified) through the wrapper:

LinearMemorylnspactor-
Panelmpl

T

! Selecting L showil: .
| inspact memary' | (k u show();
1 H |
i H i

i

User ViewManager Wrapper

Figure 8: Simplified sequence diagram to open a LinearMemorylnspectorView from the Scope View

LazyUint8Array NEW

The LazyUint8Array is an interface that wraps (some form of) a Uint8Array. In this particular use case
we actually do not have a Uint8Array in the scope view, but instead a RemoteObject that represents a
Uint8Array. This interface is a wrapper that provides methods to selectively retrieve a Uint8Array for a
certain range. The reason for using a LazyUint8Array is outlined in part 3.

Things left for later

There are several features that | haven't investigated yet, but fall into the responsibility of the
LinearMemoryInspectorPaneImpl

e Pulling the latest memory on refresh. We will store the SscriptId as StablId, and should be
able to pull the latest data from that.

e Closing the views; when do we want to close the view? Whenever the corresponding source
code is closed?

3. Ensuring that speed and memory consumption are independent of the
actual buffer size NEWM

The incoming buffer for the Wasm memory can be large. Currently, the buffer is transferred to the
Chrome DevTools front-end through a RemoteObject. Unpacking each element requires to separately



request each element from the back-end, which incurs a significant overhead (and thus a long, visible
delay for the user).

Instead of requesting all elements within the buffer, we only want to access those that are relevant,
i.e. those that we show in the view. In order to make the LinearMemoryViewer deal with only showing
a portion of the actual buffer, the LinearMemoryViewer now also takes in a memoryOffset:

LinearMemorylnspector
<component>

- memory: uint8Array

- memoryOffset: number NEW

- address: number

- valueTypes: ValueType(]

- viewConfig: Map<ValueType,
ValueTypeMode>

- history: SimpleHistoryManager

LinearMemoryViewer
<component>

- memory: uint8Array
- memoryOffset: number NEW
- address: number

The memoryOffset defines the index of the first element in the memory within the original Uint8Array.
This way, the LinearMemoryViewer can still correctly render the address of the bytes in the view.

Since the LinearMemorylnspector and the LinearMemoryViewer only see a portion of the actual
Uint8Array, changes need to be introduced in order to allow for resizing events (now showing more
elements than currently available) or for navigation changes.

The LinearMemoryInspector is responsible to request more memory if required. On navigation
changes and resize events, the LinearMemoryInspector requests a different Uint8Array range from
the LinearMemoryView by sending a MemoryRequestEvent:
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As a response, the LinearMemoryView will update the Uint8Array and set the data on the
LinearMemoryInspector, which will trigger a re-render.

The LinearMemoryInspectorView keeps a LazyUint8Array instead of the Uint8Array to process
these requests. After receiving the request for memory, it will use the LazyUint8Array instance in
order to get the requested Uint8Array range and set the new data on the LinearMemorylnspector.

front_end/linear_memory_inspectorLinearMemoryinspectorPane.js:

LinearfemorylnspectorPanelmpl
=singleton=

- tabbedPane: TabbedPane
- tabldToMemoryView: Map-<string,
LinearbemoryInspectoryview=

+ instance() :
LineardemoryinspectorPanelmpl

Wrapper

- ViEw:
LinearMemaorylnspectorPanelmpl

SimpleView
<interface>

I

LinearMemaorylnspectorview

- memory: LazyUint8Array NEW
- memorylnspector:
LinearMemaorylnspector

In this particular use case the LazyUint8Array wraps a RemoteObject, see RemoteArrayWrapper:



front_end/sources/ScopeChainSidebarPane.js:

RemoteArrayWrapper

- remoteArray: RemoteArray LazyUint8Array

<interface=

Rollout plan

1. Experiment first, gated behind the Wasm Debugging Experiment
2. Waterfall

Core principle considerations

Speed

The linear memory inspector is only showing one excerpt of the memory at a time. The memory
consumption should be independent of the actual size of the memory to be inspected. This is
explored above in this section.

Security

The Linear Memory Inspector will be gated behind the Wasm Dwarf experiment for now.

Simplicity
Originally the proposal was to show the Linear Memory Inspector within the SourcesView, i.e. as a tab
next to the sources:
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Figure 9: Showing the linear memory inspector within the Source View

Extending the SourcesView turns out to be difficult to accomplish from an architectural perspective.
The SourcesView and the TabbedEditorContainer are written such that they expect to only deal with
UlSourceCode objects.

For now, we therefore chose to open the Linear Memory Inspector at the bottom as a drawer instead.
This may also have the advantage of still being able to view the source code while inspecting the
memory.

Accessibility

The linear memory inspector should support keyboard navigation and accessibility to screenreaders.

Testing plan

Unit tests and e2e tests

Follow up work

This is the design doc for the MVP, afterwards we still need to extend it to support more features.

Other use cases of the Linear Memory Inspector

Tracking bug: crbug.com/1144654

The linear memory inspector can also be reused in different parts of the Chrome DevTools:


http://crbug.com/1144654

e forinspecting binary responses in the Network tab (including the Web Socket view)

Extension of the Linear Memory Inspector

One thing to think about is to also support Blobs.
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