Databases, queries and a load balancer

Paolo Testa
(20038424)

This tutorial is part of the education materials from the “Teaching Cloud Computing” website. For info,
comment or support, please visit http://tcc.uniupo.it.

Introduction

The goal of this tutorial is to create two databases on two separate and distinct virtual machines.
Afterwards, a load balancer will be configured through which queries will be executed and distributed
between the two databases. It will be demonstrated that, even if one of the two VMs is shut down, the
gueries will continue to function correctly thanks to the second VM still being active.

Furthermore, the tutorial will show how to create a load balancer from scratch using the terminal, including
the configuration of the pool and the listener.

Basic assumptions:

It is assumed that two instances have already been created on Chameleon Cloud, each with an associated
floating IP, and that the security group has also been configured.

Inside the instance

At this point, the connection is made to the first virtual machine.
ssh -1 ~/chiave/id_ed25519 cc@l29.114.27.285

And proceed with the installation of MySQL inside the first virtual machine.

:~$% sudo apt install
:~$ sudo apt update

$ sudo apt install mysgl-server -y

Once MySQLl is installed, access it by entering:

:~% sudo mysql

And create a database:

mysql> create database pagamenti;

Query OK, 1 row affected (©.01 sec)

In my case, | decided to create a database to manage the payments that are made, but any database could
be created to manage anything.

Next, access the previously created database:

mysql> use pagamenti;
Database changed

http://tcc.uniupo.it

And within it, create a table containing 2 columns (data and importo).

mysql> create table transazioni (
data date,
importo decimal (18,2)

-> -

]
Query OK, © rows affected (0.85 sec)

In this case too, the columns could have had different names or types, and there could have been more

“u.n

than two if another line had been added before the “;”.

Next, proceed with creating the user:

mysql> create user 'paolo'@'%' 1ldentified by 'Qwertyuiopl2!?’';
Query OK, © rows affected (0.83 sec)

Grant the user Paolo all privileges on all databases and all tables (.); the with grant option allows the user to

in turn grant privileges to other users.

On the other hand, flush privileges; reloads the privilege tables to make the recent changes effective.
mysql> grant all privileges on *.* to "paolo'@'%' with grant option;
Query OK, ® rows affected (©.01 sec)

mysql> flush privileges;
Query OK, ® rows affected (.01 sec)

Then exit MySQL:
mysql> exit
Bye

And open this file:

:~$% sudo nano /etc/mysql/mysql.conf.d/mysqld.cnf

Inside the file, look for the line bind-address to allow MySQL to listen on all network interfaces, not just on
localhost.
GNU nano 4.8 Jetc/mysgl/ 1l.conf.d/ 1d.cnf

bind-address
mysqlx—bind-address

Modify the bind-address line to 0.0.0.0.
GNU nano 4.8 Jetc/mysgl/mysqgl.conf.d/mysqgld. cnf

bind-address
mysqlx-bind-address

To save the changes to the file and exit, press Ctrl+0O, Enter, and Ctrl+X.

Restart MySQL to apply the changes made.

:~% sudo systemctl restart mysql

And finally, exit the VM:

:~$ exit

logout
Connection to 129.114.27.285 closed.

The exact same operations are repeated on the other VM that will be created.
Be careful to create the user identically in both databases, with the same name, same privileges, and the
same password, because this way queries can later be made from the load balancer to both VMs.

Openstack

It is assumed that the OpenStack RC file has already been downloaded from Chameleon, and a password
has already been created.

Then, connect to OpenStack and enter the personal password chosen earlier:

:~$% cd "/mnt/c/Users/Utente/Desktop/secondo semestre/cloud/chiave"
$ source CHI-251436-openrc.sh

(2003842u@studenti.uniupo.it) Please enter your Chameleon CLI password:

Then proceed with installing the Octavia client: first, update the system, then proceed with the installation
of Octavia, which is the OpenStack load balancing service that distributes traffic among multiple servers,

ensuring high availability and scalability of applications.
$ sudo apt update

$ sudo apt install python3-octaviaclient

Create the load balancer

First, you need to get the ID of our subnet, and to do this, run the command:

5 $ openstack subnet list
B —— e —— B —— e —— +

| Name | Metwork | Subnet

Once the ID is obtained, the load balancer will be created (in my case, | called it “testapaolo_Ib”) and in the

command, you insert the subnet ID:

$ openstack loadbalancer create --name testapaolo_lb --vip-subnet-id

admin_state_up
availability_zone
created_at
description
flavor_id None
id el682c62-5757-457f-9b3a-df327ee98628
listeners
name testapaolo_lb
operating_status OFFLINE |
pools |
project_id |
provider amphora |
provisioning_status PENDING_CREATE
updated_at None |
vip_address 10.56.2.253
I
I
I
I
I
I

\
\
2025-06-19T09:49:56 \
\
\
\

d57a2227duU3eldcc29fcO05U7bUfa3f2a

vip_network_id 58073c73-5817-U9c3-8e3a-69b8c357el58
vip_port_id d8ueedb9-UaSb-Uclb-9ce5-dac9a2185a95
vip_qos_policy_id None

vip_subnet_id 06c725cd-feef-Ubf3-a56a-U57583f00217
vip_vnic_type normal

tags
additional_vips [1

Once created, it is necessary to verify that it appears in the list of various load balancers, and that it is active
and online:

$ openstack lo alancer list

——————

| ds7a2227du3edcc
| 29fceesuTbufa3sf

eu682c62-5757- | testapaolo_lb
u57f-9b3a- I
df327ee98628 \ | 2a

ONLINE

|

|

|
- s

(for clarity, | have cut out the rest of the other LB list)

Once the load balancer is created and shows as active and online, proceed with creating the listener (called
testapaolo-listener in my case, and it is associated with my load balancer, testapaolo_Ib):

B $ openstack loadbalancer listener create --name testapaolo-listener --protocol TCP —--pr
otocol-po: 6 testapaolo_ 1

Valu
admin_state_up
connection_limit
created_at

default_pool_id
default_tls_container_ref
description

id
insert_headers
17policies
loadbalancers
name
operating_status
project_id
protocol

provisioning_status
sni_container_refs
timeout_client_data
timeout_member_connect
timeout_member_data
timeout_tcp_inspect
updated_at
client_ca_tls_container_ref
client_authentication
client_crl_container_ref
allowed_cidrs
tls_ciphers

tls_versions
alpn_protocols

tags

hsts_max_age
hsts_include_subdomains
hsts_preload

None
None

087571c90-9678-4822-al.
None

el682c62-5757-U57F-9b3a-df

testapaolo-listener

OFFLINE
7du3edcc29fcoOSUTbuYFa3

50008
]

None
None
NONE
None
None
None
None
None

Then proceed with creating the pool (in my case called testapaolo-pool), which uses round_robin as the

algorithm type, and this is also associated with my load balancer:

--listener testapaolo-listener --protocol TCP

admin_state_up
created_at
description
healthmonitor_id

id

1b_algorithm
listeners
loadbalancers
members

name
operating_status
project_id

protocol
provisioning_status
session_persistence
updated_at
tls_container_r
ca_tls_container_r
crl_container_ref
tls_enabled
tls_ciphers
tls_versions

True
2025-86-19T@9:54:02

@fu2f5d7-aceb-udfe-87d8-1a6533a89171
ROUND_ROBIN

07571c96-9670-U82 e856F99a586b
el682c62-5757-U57F-9 327ee98628

testapaolo-pool
OFFLINE

ds7a cc29fcB0547bUfa3
TCP
PENDING_CREATE
None

None

None

None

None

False

None

None

$ openstack loadbalancer pool create --name testapaolo-pool --lb-algorithm ROUND_ROBIN

tags
alpn_protocols None
O

(Round robin is a load balancing algorithm used in load balancers, that distributes requests cyclically and
sequentially among the available servers).

Once the pool is created, create a health-monitor associated with my pool, so that it can provide
information about the status of the associated members, whether they are active and working or if a failure
has occurred.

$ openstack Lloadbalancer healthmonitor create --delay 5 --timeout 3 --max-retries 3 --t
ype TCP testapaolo

pr elcc29-cOO54ThUT

name

admin_state_up

pools T-aceb-Udfe-87d8-1a6533a89171

created_at 2! -19T89:56:06

provisioning_status NDING_CREATE

updated_at None

delay 5

expected_codes None

max_retries 3

http_method None

timeout 3

max_retries_down 3

url_path None
TCP
d518ff3c-6c53-UTd6-a361-5589U3de2fuf

operating_status OFFLINE

http_version None

domain_name None

Next, proceed with creating the members in my pool. In this case, you need to specify the subnet ID, which
was found earlier through openstack subnet list, use the public IP of our VM as the address, and finally
indicate the pool to which it should be associated:

$ openstack loadbalancer member create --subnet-id 86c725cd-feef-Ubf3-a56a-u57583f008217

--address 1L

address

admin_state_up

created_at -19T@9:58:43

id 4-c@87-Ubduy-8ba2-1fefbe@l23a8
name

operating_status OFFLINE
project_id ds'
protocol_port

provisioning_status PENDING_CREATE

subnet_id 06c725cd-feef-Ubf3-a56a-457583
updated_at None

weight 1

monitor_port None

monitor_address None

backup False

U3eUcc29fc@O54TbUfa3f2a

The exact same operation is performed for the other VM to add it as a member.

Verify that both members are correctly added to the pool so they can be used, and thanks to the monitor
created earlier, it can be checked that both are online.

$ openstack loadbalancer member list testapaolo-pool
——————————————— A +
protocol_port

1
1
1
1
1
1
+
1
1
1
1
1
1
1
1
I
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
I
1
1
1
1
1
1
1
1
1
1
+
1
1
1
1
1
1
1
1
I
1
1
1
1
1
1
1

name | project_id

provisioning_status | address
______ e - -

_____________________ +
ACTIVE

weight |
———————— +
1

operating_status

I
—+

eeBa2T74-c087-
4bdu-8b
1fefbed

Tdu3elc
547bufa

Tdu3selc

>
3]
—
-
=
m

+ ———— —
+ —————t — ¢

+ —————t — ¢
+————t —

Proceed with installing mysql-client so that you can access the databases inside the VMs through the load
balancer:

: $ sudo apt update
: $ sudo apt install mysgl-client

Now you need to associate the security group to the load balancer, and to do this, first get the ID of our
security group:

3 $ openstack security group list

== ., L i i, L L e mmmm e e m e S — +
| Name | Description | Project
A A S e e R s T

created_at
description
direction ingress
ether_type IPvy
id 371c265d-ae6b-4926-bd9e-cff769117ba7
name None
normalized_cidr 9.6.0.8/8
port_range_max 3306
port_range_min 3306
project_id d57a2227du3eldcc29fcon5u7bufa3f2a
protocol
remote_address_group_id
remote oup_id
e_ip_prefix 8.0.8.8/8
revision_number]
security_group_id ea7lPafb-a6cO-Uaed-bf9e-1a38auaducdb
tags
updated_at
P

Check which security group is associated with the load balancer’s port (the ID is obtained by looking at the
“vip_port_id” line in the output when the load balancer was created)

| vip_port_id | dsueedb9-uaSb-Uclb—-9ce5-dac9a2185a95 |

e —

| Field

binding_vnic_type
created_at
LEVEWET]

d ption
device_id
device_owner
device_profile

name

ra_dhcp_opts

d_ips
hardware_offload_type
hints
id
ip_alleca
mac_addr
name
networl
numa_aff policy
enabled

propagat
resource

Value
DOWN

None

None

None

None

normal
2025-06—-19TE9 : 49
None

Octavia
None
Nene
None
None

ip_addr 10.56
None

d84eedbi-4a5b—uclb—9

fa:16 27 ub
octavia—1b—ed682c6

None
None
2

None
None

eBf-c3b8-4la2-al2e-o

73dfe2ct

Almost certainly, a different security group will be associated, so proceed to remove the current security

group and insert the security group of our interest:

a2185a95

10afb-a6cB-Uaed-bf9e-1a38albdUcdb d8uUeeBb9-Ua5b-Uclb-9ce5-dac9a2185a95

$ openstack port set ——no-security-group d8tee@b9-UaSb-liclb-9ce5-dac?

$ openstack port set --security-group ea7

(when adding the security group, you need to enter both the security group ID and the load balancer port

D).

Now if you check, the security group of our interest will appear:

admin_state_up
allowed_address_pairs
binding_host_id
binding_profile
binding_vif_details
binding_vif_type
binding_vnic_type
created_at
data_plane_status
description

device_id
device_owner

device profile
dns_assignment
dns_domain

dns_name
extra_dhcp_opts
fixed_ips
hardware_offload_type
hints

id

ip_allocation
mac_address

name

network_id
numa_affinity_policy
port_security_enabled
project_id
propagate_uplink_status
resource_request
revision_number
gos_network_policy_id
gos_policy_id
security _group_ids
status

tags

trunk_details
updated_at

created_at
description
dns_domain

dns_name
fixed_ip_address
floating_ip_address
floating_network_id
id

name

port_details
port_id

project_id
qos_policy_id
revision_number
router_id

status

subnet_id

tags

updated_at

$ openstack port show d8uee@b9-ua5b-Uclb-9ceS5-dac9a2185a95

DOWN

None
None
None

None

al
2025-06-19T09:49:562
None

2c62-5757-U57F-9b3a-df327ee98628

None
None
None

ip_address='108.56.
None

3', subnet_id='06c725cd-feef-Ubf3-a56a-U57583F00217"

d84eedb9-4asSb-Uclb-9ce5-dac9a2185a95

None

fa:1l 178 b
octavia-lb-eU682c62-5757-U57F-9b3a~-df327ee98628
50873c73-5817-U49 8e3a-69b8c357e158

None
True
ds7a
None
None

du3eldcc29fc@O547bUfa3f2a

None
None
ea7l@afb-a6cO-Uae®-bf9e-1a38audducdb
DOWN

$ openstack floating ip create public

2025-06-19T11:01:122

None

None

None

129.114.24.229
69adadl2-elPe-LUe3l-ab68-62cbeTfc23bl
26967692-1087-LUbeb-891U-a9uU67dUu3bou
129.114.24.229

None

None
d57a2227duU3etlcc29fc@O5UTbLUFa3f2a
None

2]

None

DOWN

—_—

And once created, associate it with the load balancer:

$ openstack floating ip set ——port d8lee®b9-Ua5b-Lclb-9ce5-dac9a2185a

95 129.114.24.229

Now everything is set to connect to MySQL and run queries through the load balancer that will be
distributed between the two databases.

Execute queries through the load balancer

Connect to the load balancer’s public IP, and entering the user data created previously (‘paolo” with
password ‘Qwertyuiop12!?’), will allow making queries.

$ mysql —u paole —p —h 129.114.24.229 -P 3306

Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.

Enter the “pagamenti” database:
mysql> use pagamenti;
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

And proceed with making 2 queries:

mysql> insert into transazioni (data, importo) values ('2024-86-14',6 32.20
Query OK, 1 row affected (0.15 sec)

mysql> insert into transazioni (data, importo) values ('2022-86-1u', 73.20);
Query OK, 1 row affected (8.15 sec)

Once the queries are done, exit MySQL inside the load balancer, and connect to one of the two VMs:

] $ ssh -i ~/chiave/id_ed25519 cc@129.114.26.1U6

Entering the “pagamenti” database and selecting the table, it is noted that the two queries were successful
(“sudo mysqgl” to enter mysq]l).

mysql> use pagamenti;
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Database changed
mysql> select * from transazioni;

| 202uU-86-1
| 2022-p6-1

2 rows in set (0.00 sec)

mysql> exit
Bye

Now shut down this VM:
:~% sudo shutdown now

Broadcast message from root@testapaolo-db2 on pts/1 (Thu 2025-86-19 11:10:85 UTC):

The system will power off now!

Access the load balancer again through the public IP:

$ mysql —u paolo —p -h 129.114.24.229 -P 3306

Enter password:

Welcome to the MySQL monitor. Commands end with ; or \g.

Enter the “pagamenti” database again and proceed with making other queries, and note that no error
messages appear despite one of the two VMs being shut down, because the other is still running:
mysql> use pagamenti;

Reading table information for completion of table and column names

You can turn off this feature to get a quicker startup with -A

Database changed
mysql> insert into transazioni (data, importo) values ('2005-86-1U4',6 10.20);
Query OK, 1 row affected (0.16 sec)

mysql> insert into transazioni (data, importo) values ('2042-86-14', 26849.20);
Query OH, 1 row affected (0.15 sec)

mysql> exit
Bye

Finally, connect to the other VM:
1 $ ssh -i ~/chiave/id_ed25519 cc@129.114.27.205
Welcome to Ubuntu 24.084.2 LTS (GNU/Linux 6.8.8-59-generic x86_6L)
:~$ sudo mysql
Welcome to the MySQL monitor. Commands end with ; or \g.

Entering the payments database and selecting the table, it is noted that the last two queries were
successful.

mysql> use pagamenti;
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Database changed
mysql> select * from transazioni;

| 2005-06-14
| 20u42-06-14 | 268U9.20 |

2 rows in set (0.80 sec)

mysql> exit
Bye

