
 

 

 

 

 

 

 

Databases, queries and a load balancer 

 

Paolo Testa 

(20038424) 

 



This tutorial is part of the education materials from the “Teaching Cloud Computing” website. For info, 

comment or support, please visit http://tcc.uniupo.it. 
 

Introduction 
The goal of this tutorial is to create two databases on two separate and distinct virtual machines. 

Afterwards, a load balancer will be configured through which queries will be executed and distributed 

between the two databases. It will be demonstrated that, even if one of the two VMs is shut down, the 

queries will continue to function correctly thanks to the second VM still being active.​
Furthermore, the tutorial will show how to create a load balancer from scratch using the terminal, including 

the configuration of the pool and the listener. 

 

Basic assumptions: 
It is assumed that two instances have already been created on Chameleon Cloud, each with an associated 

floating IP, and that the security group has also been configured. 

 

Inside the instance 
At this point, the connection is made to the first virtual machine. 

 

 

And proceed with the installation of MySQL inside the first virtual machine.

 

 

Once MySQL is installed, access it by entering: 

 

 

And create a database: 

 

In my case, I decided to create a database to manage the payments that are made, but any database could 

be created to manage anything. 

 

Next, access the previously created database: 

 

 

 

 

 

 

 

http://tcc.uniupo.it


 

And within it, create a table containing 2 columns (data and importo). 

 

In this case too, the columns could have had different names or types, and there could have been more 

than two if another line had been added before the “;”. 

 

Next, proceed with creating the user: 

 

 

Grant the user Paolo all privileges on all databases and all tables (.); the with grant option allows the user to 

in turn grant privileges to other users.​
On the other hand, flush privileges; reloads the privilege tables to make the recent changes effective. 

 

 

Then exit MySQL: 

 

 

And open this file: 

 

 

Inside the file, look for the line bind-address to allow MySQL to listen on all network interfaces, not just on 

localhost. 

 

 

Modify the bind-address line to 0.0.0.0. 

 

 

To save the changes to the file and exit, press Ctrl+O, Enter, and Ctrl+X. 



Restart MySQL to apply the changes made. 

 

And finally, exit the VM: 

 

 

The exact same operations are repeated on the other VM that will be created. 

Be careful to create the user identically in both databases, with the same name, same privileges, and the 

same password, because this way queries can later be made from the load balancer to both VMs. 

 

Openstack 
It is assumed that the OpenStack RC file has already been downloaded from Chameleon, and a password 

has already been created. 

 

Then, connect to OpenStack and enter the personal password chosen earlier: 

 

 

Then proceed with installing the Octavia client: first, update the system, then proceed with the installation 

of Octavia, which is the OpenStack load balancing service that distributes traffic among multiple servers, 

ensuring high availability and scalability of applications. 

 

 

 

Create the load balancer 
First, you need to get the ID of our subnet, and to do this, run the command: 

 

 

Once the ID is obtained, the load balancer will be created (in my case, I called it “testapaolo_lb”) and in the 

command, you insert the subnet ID: 



 

 

Once created, it is necessary to verify that it appears in the list of various load balancers, and that it is active 

and online: 

 

 

(for clarity, I have cut out the rest of the other LB list) 

 

Once the load balancer is created and shows as active and online, proceed with creating the listener (called 

testapaolo-listener in my case, and it is associated with my load balancer, testapaolo_lb): 

 

 

 

 

 

 

 

 

 



Then proceed with creating the pool (in my case called testapaolo-pool), which uses round_robin as the 

algorithm type, and this is also associated with my load balancer: 

 

 

(Round robin is a load balancing algorithm used in load balancers, that distributes requests cyclically and 

sequentially among the available servers). 

 

 

Once the pool is created, create a health-monitor associated with my pool, so that it can provide 

information about the status of the associated members, whether they are active and working or if a failure 

has occurred. 

 

 

Next, proceed with creating the members in my pool. In this case, you need to specify the subnet ID, which 

was found earlier through openstack subnet list, use the public IP of our VM as the address, and finally 

indicate the pool to which it should be associated: 

 

 

The exact same operation is performed for the other VM to add it as a member. 

 



Verify that both members are correctly added to the pool so they can be used, and thanks to the monitor 

created earlier, it can be checked that both are online. 

 

 

Proceed with installing mysql-client so that you can access the databases inside the VMs through the load 

balancer: 

 

 

Now you need to associate the security group to the load balancer, and to do this, first get the ID of our 

security group: 

 

 

Create the rule to add to the security group if it is not already present: 

 

 

Check which security group is associated with the load balancer’s port (the ID is obtained by looking at the 

“vip_port_id” line in the output when the load balancer was created) 

 

 



 

 

 

 

Almost certainly, a different security group will be associated, so proceed to remove the current security 

group and insert the security group of our interest: 

 

(when adding the security group, you need to enter both the security group ID and the load balancer port 

ID). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Now if you check, the security group of our interest will appear: 

 

 

Next, proceed with creating a public floating IP: 

 

 

 

 

And once created, associate it with the load balancer: 

 

 

Now everything is set to connect to MySQL and run queries through the load balancer that will be 

distributed between the two databases. 

 

 



Execute queries through the load balancer 
 

Connect to the load balancer’s public IP, and entering the user data created previously (‘paolo’ with 

password ‘Qwertyuiop12!?’), will allow making queries. 

 

 

Enter the “pagamenti” database: 

 

 

And proceed with making 2 queries: 

 

 

Once the queries are done, exit MySQL inside the load balancer, and connect to one of the two VMs: 

 

 

Entering the “pagamenti” database and selecting the table, it is noted that the two queries were successful 

(“sudo mysql” to enter mysql). 

 

Now shut down this VM: 

 



Access the load balancer again through the public IP: 

 

 

Enter the “pagamenti” database again and proceed with making other queries, and note that no error 

messages appear despite one of the two VMs being shut down, because the other is still running: 

 

 

Finally, connect to the other VM: 

 

 

 

Entering the payments database and selecting the table, it is noted that the last two queries were 

successful. 

 


