# BIGTREETECH Pi V1.2

**User Manual** 

## CONTENTS

| Revision History                      | 3  |
|---------------------------------------|----|
| Product Profile                       | 4  |
| Feature Highlights                    | 4  |
| Specifications                        | 4  |
| Dimensions                            | 5  |
| Peripheral Port                       | 5  |
| Connector Diagram                     | 5  |
| Connection Description                | 6  |
| Power Supply                          | 6  |
| 40 pins GPIO                          | 7  |
| ADXL345 Wiring                        | 7  |
| SPI Display Wiring                    | 8  |
| Connecting a USB To CAN Module        | 9  |
| Fan Wiring                            | 9  |
| HDMI Display Wiring                   | 10 |
| OS Writing                            | 11 |
| Download OS Image                     | 11 |
| Download and Install Writing Software | 11 |
| Start to Write OS                     | 11 |
| Using Raspberry Pi Imager             | 11 |
| Using balenaEtcher                    | 13 |
| Network Configuration                 | 15 |
| Wired Network                         | 15 |
| WiFi Setting                          | 15 |
| Configure the Motherboard             | 16 |
| SSH Connect to Device                 | 16 |
| Compile MCU Firmware                  | 17 |
| Cautions                              | 19 |

# **Revision History**

| Version | Revisions | Date       |
|---------|-----------|------------|
| 01.00   | Original  | 2022/12/29 |

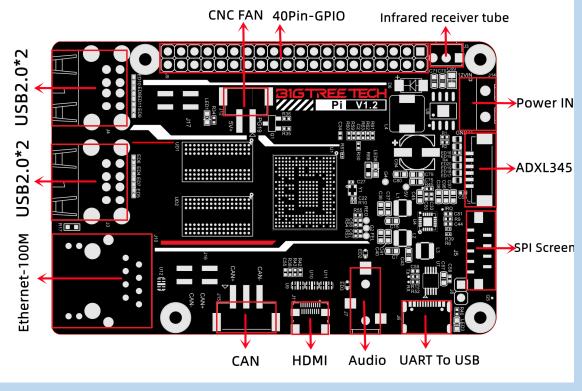
# **Product Profile**

BIGTREETECH Pi v1.2 has the same size and the same mounting hole location as Raspberry Pi, with 2.4GHz WiFi built in.


#### **Feature Highlights**

- 1. CPU: ALLWINNER H616, Quad-core Cortex-A53 @1.5GHz
- 2. GPU: Mali G31 MP2, Support OpenGL3.2
- 3. RAM: 1GB DDR3L SDRAM
- 4. Display: HDMI2.0A Port, 4K Supported
- 5. 4 x USB 2.0 Ports
- 6. Fast Ethernet + 100Mbps WiFi
- 7. Audio: 3.5mm Jack
- 8. 40-pin GPIO
- 9. Display: SPI Port
- 10. ADXL345 Port
- 11. Onboard connecting port for USB To CAN Module.
- 12. Built-in IR Receiver
- 13. The mounting holes are in the same location as Raspberry Pi.

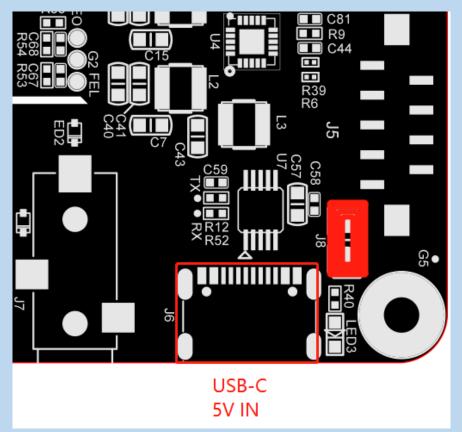
#### **Specifications**


- 1. Product Dimensions: 85 x 56 mm
- 2. Mounting Size: 64 x 49.4 mm
- 3. Type-C Input Voltage: DC 5V±5%/2A
- 4. Input Voltage of Power IN Terminal: DC 12V-24V
- 5. Pi v1.2 Output Voltage: 3.3V±2%/100mA
- 6. Pi v1.2 WiFi: 2.4G/802.11 b/g/n Wireless LAN

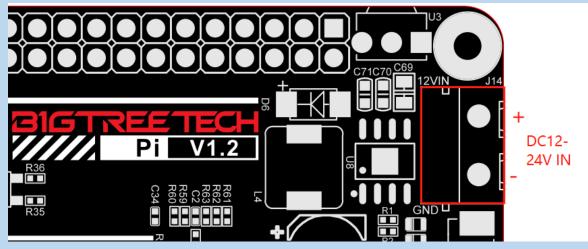
#### Dimensions



# **Peripheral Port**


## **Connector Diagram**

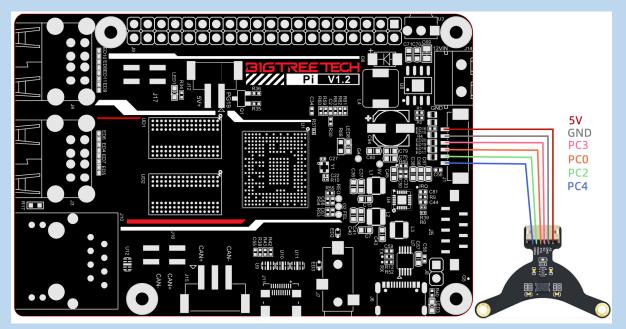



# **Connection Description**

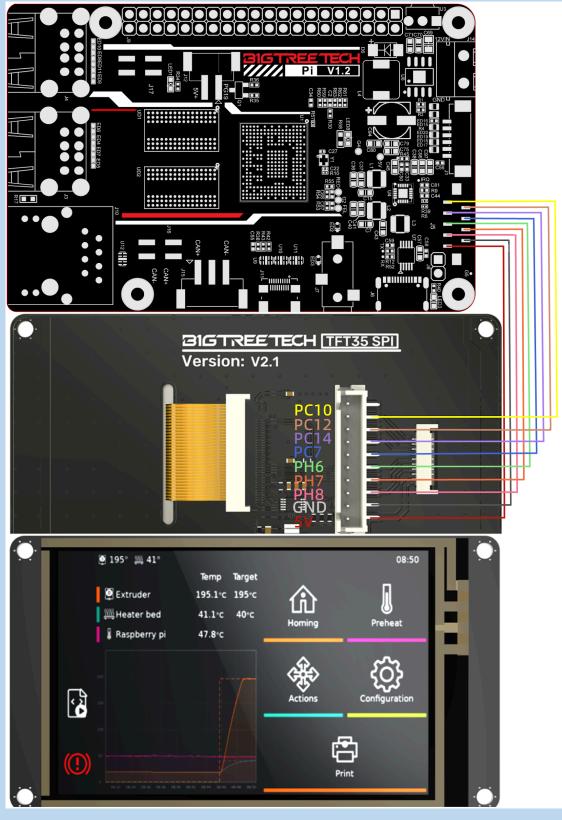
#### **Power Supply**

**USB Power Supply:** The SOC's UART converts USB signals through WCH340E. Connect this port to the PC to monitor Pi startup via the serial port tool, and identify faulty parts if there are any.



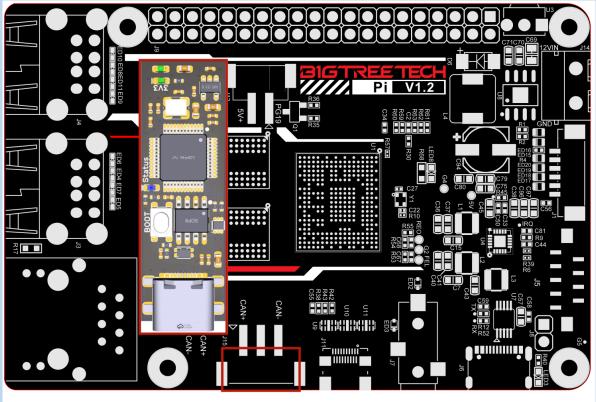

DC12-24V:




# 40 pins GPIO

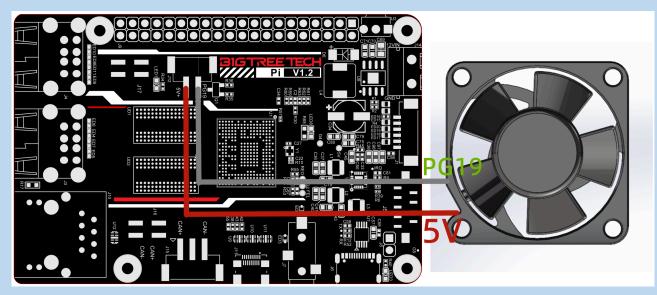
| 40Pin-GPI0 |          |       |                             |     |     |                        |      |          |        |
|------------|----------|-------|-----------------------------|-----|-----|------------------------|------|----------|--------|
| BTT Pi     | CB1-eMMC | CB1   | CM4                         |     |     | CM4                    | CB1  | CB1-eMMC | BTT Pi |
| 3. 3V      | 3. 3V    | 3. 3V | 3. 3V                       | 8   |     | 5V                     | 5V   | 5V       | 5V     |
| PC3        | NC       | NC    | GPIO 2<br>(I2C1 SDA)        |     |     | 5V                     | 5V   | 5V       | 5V     |
| PCO        | NC       | NC    | GPIO 3<br>(I2C1 SCL)        |     |     | GND                    | GND  | GND      | GND    |
| PC7        | PI14     | PC7   | GPIO 4<br>(GPCLKO)          |     | • ] | GPIO 14<br>(UART TX)   | тх   | тх       | ТХ     |
| GND        | GND      | GND   | GND                         |     |     | GPIO 15<br>(UART RX)   | RX   | RX       | RX     |
| PC14       | PI 15    | PC14  | GPIO 17                     | •   | - ] | GPIO 18<br>(PC∎ CLK)   | PC13 | PI7      | PC13   |
| PC12       | PI6      | PC12  | GPI0 27                     | •   |     | GND                    | GND  | GND      | GND    |
| PC10       | PI4      | PC10  | GPIO 22                     | • • | - ] | GPIO 23                | PC11 | P15      | PC11   |
| 3. 3V      | 3. 3V    | 3. 3V | 3. 3V                       | •   | • ] | GPIO 24                | PC9  | PI3      | PC9    |
| PH7        | PH7      | PH7   | GPIO 10<br>(SPIO ∎OSI)      | •   |     | GND                    | GND  | GND      | GND    |
| РН8        | PH8      | PH8   | GPIO 9<br>(SPIO ∎ISO)       | • • | - ] | GPIO 25                | NC   | NC       | PG13   |
| PH6        | РН6      | PH6   | GPIO 11<br>(SPIO SCLK)      |     | - ] | GPIO 8<br>(SPIO CEO)   | NC   | NC       | PG12   |
| GND        | GND      | GND   | GND                         | •   | • ] | GPIO 7<br>(SPIO CE1)   | PG8  | PI11     | P19    |
| PC2        | NC       | NC    | GPIO O<br>(EEPRO∎ SDA)      | •   |     | GPIO 0<br>(EEPROM SCL) | PG7  | PI 10    | PI 10  |
| PC4        | NC       | NC    | GPIO 5                      | •   |     | GND                    | GND  | GND      | GND    |
| PI5        | PI9      | PG6   | GPIO 6                      |     | 1   | GPIO 12<br>(PV∎O)      | PG9  | PI 12    | PI6    |
| PI14       | NC       | NC    | GPIO 13<br>(PV∎1)           | •   |     | GND                    | GND  | GND      | GND    |
| PC6        | PI1      | PC6   | GPIO 19<br>(PC <b>I</b> FS) |     | 1   | GPIO 16                | NC   | NC       | PG11   |
| PC15       | PI13     | PC15  | GPIO 26                     | •   | 1   | GPIO 20<br>(PCM DIN)   | PH10 | PH10     | PH4    |
| GND        | GND      | GND   | GND                         | •   |     | GPIO 21<br>(PC∎ DOUT)  | PC8  | PI2      | PC8    |

# ADXL345 Wiring

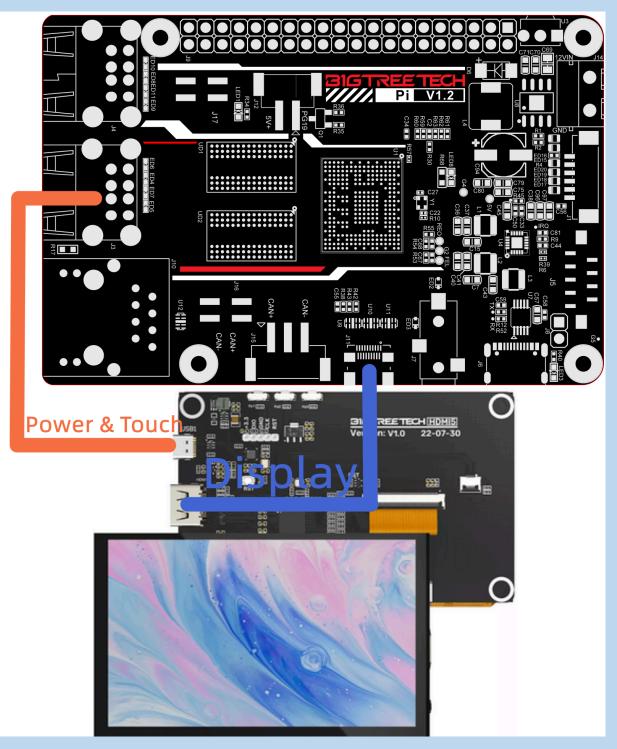



# **SPI Display Wiring**




# **Connecting a USB To CAN Module**

Note: when using the U2C module, the SOC's USB2 is used for communication.




CAN-H GND CAN-L

## **Fan Wiring**



# **HDMI Display Wiring**



# **OS Writing**

### **Download OS Image**

Please download and install the OS image we provided: <u>https://github.com/bigtreetech/CB1/releases</u>

#### **Download and Install Writing Software**

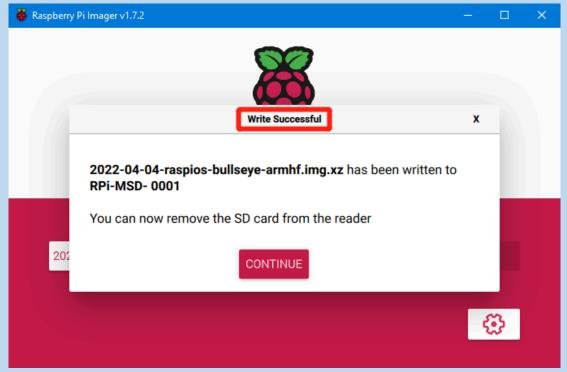
Install the official Raspberry Pi Imager: <u>https://www.raspberrypi.com/software/</u> balenaEtcher: <u>https://www.balena.io/etcher/</u> Choose one of the above software to download and install.

#### Start to Write OS

#### **Using Raspberry Pi Imager**

- 1. Insert a microSD card into your computer via a card reader.
- 2. Choose OS.




3. Select "Use custom", then select the image that you downloaded.

| 🍯 Ras | pberry Pi Imager v1.7.2                                                                      | – 🗆 X |
|-------|----------------------------------------------------------------------------------------------|-------|
|       |                                                                                              |       |
|       | Operating System                                                                             | x     |
|       | Emulators for running retro-computing platforms                                              | >     |
|       | Other specific-purpose OS<br>Thin clients, digital signage and 3D printing operating systems | >     |
|       | Misc utility images<br>Bootloader EEPROM configuration, etc.                                 | >     |
|       | Format card as FAT32                                                                         |       |
|       | Ling Select a custom .img from your computer                                                 |       |
|       |                                                                                              |       |

4. Select the microSD card and click "WRITE" (WRITE the image will format the microSD card. Be careful not to select the wrong storage device, otherwise the data will be formatted).



5. Wait for the writing to finish.



#### Using balenaEtcher

1. Insert a microSD card into your computer via a card reader.

2. Select the image that you downloaded.

| 🔶 Etcher         |                 | – 🗆 🗙      |
|------------------|-----------------|------------|
|                  | 🕎 balena Etcher | ¢ 0        |
| ÷ —              |                 | — <b>f</b> |
| Flash from file  |                 |            |
| & Flash from URL |                 |            |
| 🕒 Clone drive    |                 |            |
|                  |                 |            |
|                  |                 |            |

3. Select the microSD card and click "WRITE" (WRITE the image will format the microSD card. Be careful not to select the wrong storage device, otherwise the data will be formatted).

| 😂 Etcher           |                 |     |           | × |
|--------------------|-----------------|-----|-----------|---|
|                    | 🜍 balena Etcher |     | <b>\$</b> | ? |
| ÷ —                |                 | - 4 |           |   |
| CB1_Debia09012.img | Select target   |     |           |   |
| Remove             |                 |     |           |   |
| 2.51 GB            |                 |     |           |   |
|                    |                 |     |           |   |
|                    |                 |     |           |   |
|                    |                 |     |           |   |
|                    |                 |     |           |   |
|                    |                 |     |           |   |

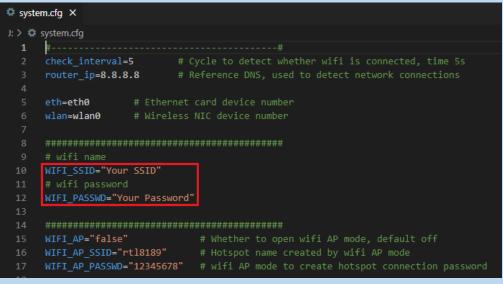
4. Wait for the writing to finish.

| 🔶 Etcher                                  |                                    | – 🗆 🗙             |
|-------------------------------------------|------------------------------------|-------------------|
|                                           | 脊 balena Etcher                    | ¢0                |
| CB1_Debian12209012.img<br>Flash Complete! |                                    |                   |
| 1 Successful target                       | Want to try more projects like the | one you just saw? |
| Effective speed: 29.1 MB/s Flash another  | Go to balenaHub                    | $\supset$         |
|                                           |                                    |                   |

## **Network Configuration**

#### Wired Network

For wired networks, no additional settings are needed. Just plug and play.


#### WiFi Setting

After the OS image writing is completed, the microSD card will have a FAT32 recognized by the computer, find "system.cfg".

| BOOT (J:)                   |                  |              | ٽ ~       |
|-----------------------------|------------------|--------------|-----------|
| へ<br>名称                     | 修改日期             | 类型           | 大小        |
| dtb                         | 2022/11/9 2:50   | 文件夹          |           |
| dtb-5.16.17-sun50iw9        | 2022/11/9 2:50   | 文件夹          |           |
| gcode                       | 2022/11/9 10:35  | 文件夹          |           |
| next                        | 2022/11/9 2:50   | NEXT 文件      | 0 KB      |
| BoardEnv.txt                | 2022/11/9 2:53   | 文本文档         | 1 KB      |
| 📧 boot.bmp                  | 2022/11/9 2:52   | BMP 图像       | 10 KB     |
| loot.cmd                    | 2022/11/9 2:48   | Windows 命令脚本 | 4 KB      |
| 📧 boot.scr                  | 2022/11/9 2:53   | 屏幕保护程序       | 4 KB      |
| config-5.16.17-sun50iw9     | 2022/11/9 2:39   | 17-SUN50IW9  | 176 KB    |
| 📄 Image                     | 2022/11/9 2:39   | 文件           | 20,631 KB |
| initrd.img-5.16.17-sun50iw9 | 2022/11/9 2:54   | 17-SUN50IW9  | 9,171 KB  |
| system.cfg                  | 2022/11/10 17:52 | 文本文档         | 1 KB      |
| System.map-5.16.17-sun50iw9 | 2022/11/9 2:39   | 17-SUN50IW9  | 4,239 KB  |
| 📄 ulnitrd                   | 2022/11/9 2:54   | 文件           | 9,171 KB  |
| vmlinuz-5.16.17-sun50iw9    | 2022/11/9 2:39   | 17-SUN50IW9  | 20,631 KB |

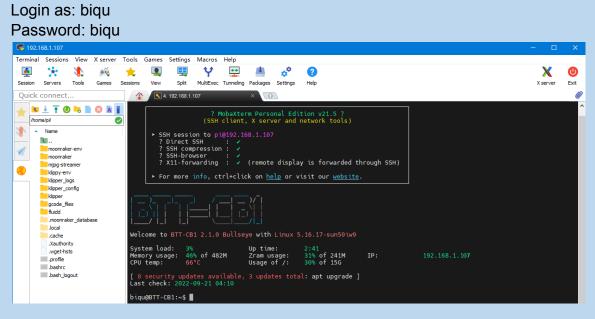
Open it with Notepad, replace WIFI-SSID with your WiFi name, and

#### PASSWORD with your password.



# **Configure the Motherboard**

#### **SSH Connect to Device**


- 1. Install the SSH application Mobaxterm: https://mobaxterm.mobatek.net/download-home-edition.html
- 2. Insert the microSD card into the motherboard, and wait for the system to load after powering on, approx. 1-2min.
- 3. The device will automatically be assigned an IP address after successfully connecting to the network.
- 4. Find the device IP address on your router page.



5. Open Mobaxterm and click "Session", and click "SSH", enter the device IP into the Remote host, and click "OK" (Note: your computer and the device needs to be under the same network).

| Session Servers Tools Games | Tools Games Settings Macros Help<br>★ III III IIII IIII IIIIIIIIIIIIIIIIII                                                                                                                                                                                                                                 | X server Ex | ×<br>ixit |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|
| Quick connect               | Section settings  Section settings  Telnet Rsh Xdmcp RDP VNC FTP SFTP Serial File Shell Browser Mosh Aws S3 WSL  Basic SSH settings  Remote host  192.168.1.107  Specify username  Port  Advanced SSH settings  Terminal settings  Network settings  Bookmark settings  Secure Shell (SSH) Session  4  Coc |             | *         |

6. Login



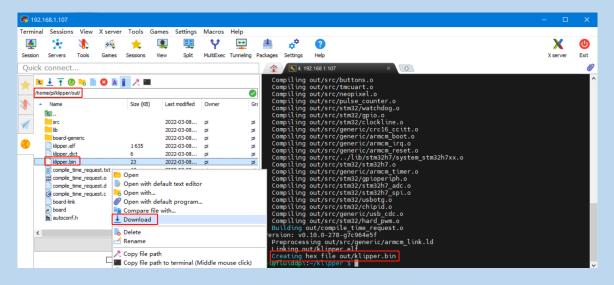
## **Compile MCU Firmware**

1. After SSH is successfully connected to the device, enter in the terminal:

```
cd ~/klipper/
```

```
make menuconfig
```

The firmware is compiled based on the motherboard configuration, here we take Manta M4P as an example:


- \* [\*] Enable extra low-level configuration options
- \* Micro-controller Architecture (STMicroelectronics STM32) --->
- \* Processor model (STM32G0B1) --->
- \* Bootloader offset (8KiB bootloader) --->

[Q] Quit (prompts for save) [ESC] Leave menu

- \* Clock Reference (8 MHz crystal) --->
- \* Communication interface (USB (on PA11/PA12)) --->

| (Top)<br>Klipper Firmware Configuration                                                   |
|-------------------------------------------------------------------------------------------|
| * Enable extra low-level configuration options                                            |
| Micro-controller Architecture (STMicroelectronics STM32)><br>Processor model (STM32G0B1)> |
| Bootloader offset (8KiB bootloader)>                                                      |
| Clock Reference (8 MHz crystal)>                                                          |
| Communication interface (USB (on PA11/PA12))>                                             |
| USB ids $\longrightarrow$                                                                 |
| () GPIO pins to set at micro-controller startup                                           |
|                                                                                           |
| [Space/Enter] Toggle/enter [?] Help [/] Search                                            |

- 2. Press 'q' to exit, and "Yes" when asked to save the configuration.
- 3. Run **make** to compile firmware, 'klipper.bin' file will be generated in the **home/pi/klipper/out** folder when **make** is finished, download it onto your computer using the SSH application.



# Cautions

Pay attention to the heat dissipation of Pi. If the running application consumes too many system resources, it will get hot quite serious.

If you need other resources for this product, please visit <u>https://github.com/bigtreetech/</u> and find them yourself. If you cannot find the resources you need, you can contact our after-sales support.

If you encounter other problems during use, feel free to contact us, and we are answering them carefully; any good opinions or suggestions on our products are welcome, too and we will consider them carefully. Thank you for choosing BIGTREETECH. Your support means a lot to us!