Основы термодинамики

Термодинамика – это теория тепловых явлений, в которой не учитывается атомарно-молекулярное строение вещества.

Внутренняя энергия тела U — это сумма потенциальной энергии составляющих тело частиц, и кинетической энергии их хаотического теплового движения.

Внутренняя энергия идеального одноатомного газа U равна сумме кинетической энергии его молекул.

$$U = \frac{3\overline{m}RT}{2M} = \frac{3\overline{v}RT}{2}$$

Внутренняя энергия тел зависит от температуры, массы и агрегатного состояния. С ростом температуры внутренняя энергия увеличивается. Наибольшая внутренняя энергия у вещества в газообразном состоянии, наименьшая – в твердом.

Внутренняя энергия идеального газа прямо пропорциональна его температуре, а от объема не зависит (молекулы идеального газа не взаимодействуют друг с другом)

$$U = -\frac{i}{2}\nu RT$$

Коэффициент i - число степеней свободы молекулы. Число степеней свободы равно числу возможных движений частицы. Если газ одноатомный, то i=3. Если газ двухатомный, то i=5.

Если газ трех атомный или состоит из большего числа атомов, то i = 6.

Способы изменения внутренней энергии тела:

- 1) посредством теплопередачи Q (теплопроводность, конвекция, излучение);
- 2) совершение над телом работы $A_{\rm виеци}$.

Теплопередача - самопроизвольный необратимый процесс переноса энергии от более нагретых тел или участков тела к менее нагретым.

Теплопроводность - свойство материала передавать теплоту через свою толщу от одной поверхности к другой, если эти поверхности имеют разную температуру.

Конвекция - вид теплопередачи, при котором передача тепла осуществляется переносом вещества.

Излучение - вид теплопередачи, осуществляемый посредством электромагнитных волн, излучаемых нагретыми телами.

Работа газа в термодинамике

A > 0, газ совершает работу (он расширяется и охлаждается).

A < 0, над газом совершают работу (его сжимают, и он нагревается)

A = 0, объем газа не изменяется, то работа газа равна нулю (при изохорном процессе).

Работу газа можно вычислить:

- A^2
- 1. Работа газа A при изобарном процессе равна произведению давления $A_{\text{газа}} = p\Delta V$ газа на изменение его объема:
- 2. Работа газа при произвольном процессе равна площади фигуры под графиком процесса.
- 3. Из первого закона термодинамики.

Количество теплоты $Q(\mathbb{A})$ – энергия, которую тело получает или отдает в результате теплопередачи.

Количество теплоты, полученное телом при **нагревании** (Q > 0) или отданное при **охлаждении** (Q < 0):

$$Q = cm(t_2 - t_1)$$

Удельная теплоемкость вещества c – это физическая величина, равная количеству теплоты, необходимого для изменения температуры 1 кг вещества на 1° C (1K), Дж/(кг·K).

Количество теплоты, полученное телом при **плавлении** (Q > 0) или отданное при **кристаллизации** (Q < 0)

$$Q = \lambda m$$

Удельная теплота плавления **∧** - это физическая величина, равная количеству теплоты, необходимого для расплавления 1 кг вещества при температуре плавления, Дж/кг.

Температура кристаллизации равна температуре плавления.

При плавлении (кристаллизации) кристаллических тел их температура в течении всего процесса не меняется.

Количество теплоты, полученное телом при <u>парообразовании (Q > 0)</u> или отданное при <u>конденсации (Q < 0):</u>

$$Q = Lm$$

Удельная теплота парообразования L - это физическая величина, равная количеству теплоты, необходимого для перевода 1 кг жидкости в пар при температуре кипения, Дж/кг.

Парообразование – это процесс перехода вещества из жидкого состояния в газообразное (в пар).

Испарение - парообразование, происходящее с поверхности жидкости. Жидкости испаряются при любой температуре.

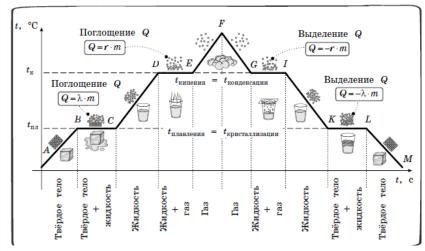
Скорость испарения жидкости зависит от: температуры, рода жидкости, площади поверхности и плотности паров над поверхностью жидкости. Так как поверхность жидкости покидают молекулы с наибольшей скоростью (соответственно и кинетической энергией), то в результате испарения температура жидкости уменьшается. Конденсация — это процесс, обратный процессу испарения. При конденсации молекулы пара возвращаются в жидкость.

Кипением - процесс интенсивного парообразования, происходящий по всему объему жидкости.

В жидкости всегда имеются мельчайшие пузырьки пара. Пар внутри пузырька является насыщенным. Кипение жидкости начинается при такой температуре, при которой давление ее насыщенных паров становится равным внешнему давлению.

В **герметически закрытом сосуде** жидкость **кипеть не может**, т. к. при каждом значении температуры устанавливается равновесие между жидкостью и ее насыщенным паром.

Количество теплоты, выделяющейся при сгорании топлива:


Q = qm

Удельная теплота сгорания q - это физическая величина, равная количеству теплоты, выделяющейся при сгорании 1 кг топлива, Дж/кг.

Уравнение теплового баланса: количество теплоты Q_I , полученного одними телами в

теплоизолированной системе равно количество теплоты Q_2 , отданного другими телами системы. Если система тел является **теплоизолированной**, то ее внутренняя энергия не будет изменяться несмотря на изменения, происходящие внутри системы. Если A = 0, Q = 0, то и $\Delta U = 0$.

Вещество первоначально находится в твердом состоянии.

АВ – нагревание твердого тела (t – увел., Q > 0, U – увел.)

 ${f BC}$ – плавление (t – не изм., Q > 0,U – увел.)

 ${\bf CD}$ – нагревание жидкости (t – увел., Q > 0, U – увел.)

DE- кипение жидкости (t – не изм., > 0, U – увел.

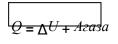
 ${\bf EF}$ – нагревание (газа) пара (t – увел., Q > 0, U – увел.)

FG – охлаждение, остывание (газа) пара (t - умен.) Q < 0, U - умен.)

 ${\bf GI}$ – конденсация пара (t – не изм., Q < 0, U – умен.)

IK – охлаждение жидкости (t – умен., Q < 0, U – умен.)

KL – кристаллизация (отвердевание) (t – не изм., Q < 0, U – умен.)


LM – охлаждение твердого тела (t – умен., Q < 0, U – умен.)

Первое начало термодинамики:

1) изменение внутренней энергии тела равно сумме количества теплоты, переданного телу, и работы, совершенной над телом;

 $\Delta U = Q + A_{6He} u$

2) количество теплоты, переданное термодинамической системе, идет на изменение

внутренней энергии системы и совершение системой работы.

Если система изолирована и над ней не совершается работа и нет теплообмена с внешними телами, то в этом случае внутренняя энергия не изменяется. Если к системе не поступает теплота, то работа системой может совершаться

Применение первого начала термодинамики к изопроцессам:			
Изотермический процесс,	Изохорный процесс,	Изобарный процесс,	Адиабатический процесс,
T = const	V = const	p = const	Q = 0
$\Delta U = 0 \Rightarrow Q = A_{2a3a}$	$A_{2a3a} = 0 \Rightarrow Q = \Delta U$	$Q = \Delta U + A_{2a3a}$	$A_{\mathcal{C}a3a} = -\Delta U$

Адиабатный процесс – процесс, который происходит без теплопередачи (Q=0). При адиабатном процессе газ совершает работу за счет своей внутренней энергии (при этом газ охлаждается). Если над газом совершать работу, то его внутренняя энергия увеличивается (газ нагревается).

Второе начало термодинамики: невозможно перевести тепло от более холодной системы к более горячей при отсутствии одновременных изменений в обеих системах или окружающих телах.

Работа теплового двигателя A равна разности количества теплоты, полученного телом от нагревателя Q_I , и количества теплоты, переданному холодильнику Q_2 : A = Q1 - Q2

 $\eta = \frac{A}{Q_1} = \frac{Q_1 - Q_2}{Q_2}$

КПД идеального теплового двигателя:

 $\eta_{\text{max}} = \frac{T_1 - T_2}{T_1}$

КПД теплового двигателя:

 T_{I} – температура нагревателя, T_{2} – температура холодильника.

Из формулы КПД следуют выводы:

только за счет уменьшения внутренней энергии.

- 1. для повышения КПД тепловой машины нужно увеличить температуру нагревателя и уменьшить температуру холодильника;
- 2. КПД тепловой машины всегда меньше 1 (меньше 100%).