Problem Set Four AP Computer Science
Unit 4 - Arrays Due: 1/14/2019

Instructions
Create a Java Project called LastNameFirstNamePS4. Within that project, create
a class called LastNameExercises. Be sure that it has a main method.

Your work is due the day of the unit exam, but you are expected to answer
questions after each class.

Scoring

You may score up to 6 points for each question.

-2 pts: it works

-2 pts: properly uses new techniques

-2 pts: follows the style guide (see below)

Submission

Zip the file and submit it to our assignment in Google Classroom. Be sure the zip
file is named LastNameFirstNamePS1. Visit the class website for further
instructions.

Style Guide

Unit 4

Arrays
-All data should be of same type.
-Simplest way to traverse: for(int i = O; i < arr.length; i++) { something(arr[i]);}
-Use for-each when you don't want to change the array itself, for loop when you
do.
-Avoid returning arrays as a fix for returning multiple values from a method.
-If you know the array’s values up front, initialize in one line with the values:

intf[Jarr={3, 5, 2, 8};

Unit 3
Parameters
-Include parameters that can make a method more general.
-Don't include parameters that are never used or that are the same every time.
If/else statements
-Should never have any code in common.
While loops
-Use when you're not sure how many time code will be executed.
-Use sentinels to keep your eye on a particular target value for stopping the
loop.

-Use fencepost design to make the first or last iteration different.
Booleans
-Never say A==true or Al=true; just use A or |A.
-Never code if(A==true){return true;} else{return false:}. Just: return A;
-Remember that && and || only operate on booleans. Therefore you must:
replace: A || B == with: A==1]| B==
-Avoid needless parentheses.
Objects
-Scanner, Random objects should be made in main method and passed to
methods.
-Place all import statements at the very top of the class, only after identifying
comments.

Unit 2
Variables
-Use the correct data type - int for whole numbers, double for more precision.
-Create descriptive variable names.
-Variable names should follow the same conventions as method names.
Class Constants
-Use these for a value that is the same for the whole run of the program.
-Naming convention: all capital letters separated by underscores
-Keywords: public static final
For loops
-Use for code that repeats a set number of times (more than once).

Unit 1
General
-Place each statement on its own line.
-Use spaces and indentation o make code legible.
-Use comments to explain the purpose of complicated code.
Naming Conventions
-Classes: Start with a capital letter and capitalize every word that follows. Ex:
ClassName
-Methods: Start with a lowercase letter and capitalize every word that follows.
Ex: methodName
Methods
-Use static methods to break your program into reusable pieces to reduce
redundancy.
-Avoid trivial methods that do not accomplish much.
-Leave a blank line between methods.
-Pairs of curly braces should be easily identifiable.

Printing
-For a blank line, use System.out.printin(); not System.out.printin(*");
-To print text on the same line, only use one print statement.
-Use printin() rather than including \n at the end of a print() statement.

Formatting
Indentation

-Within a set of curly braces, indent one level with tab or 3 spaces.
-Be consistent at each level.
-Keep braces visible. Do so by closing the curly brace on the same level as the
header with the opening {.
-Loops or if/else with just line don't need curly braces, but should be indented.
Spacing
-Use spaces liberally.

Good spacing

int i1 = methodCall() * 37 + j % 4;

for (int 1 = 0; 1 < 10; 1i++)

while (sum < target)

public void myMethod(int x, int vy) {

methodCall (paraml, paraml):;

public class Foo ({

int[] myArray = new int[x + 1]1;

Commenting
-Begin each class with a comment of your name and a description of the program.
-Comment each method with a description of what it does, what the parameters
mean, what it will return, and whether there are any parameter restrictions.
-Comments describe what something does, not how it does it.
-Unless you are doing something unexpected or unusual! Then explain it.
-Single line: //comment
-Multiple lines: /* comment
comment */

Problems

1. December 12th
Write your code in a method named: printArray under the comment:
//Exercise 1

Your method will accept no parameters and return nothing.
Create an array of 5 booleans and print each one out using a for-loop.

Optional further exercises: Practice-It: 7.1 - arrayDeclarationSyntax, 7.3 -
dataArray

2. December 13
Write your code in a method named: checkOverl100 under the comment:
//Exercise 2

Ask a user to input ten numbers into an array. Use a for-each loop to keep track of
whether any of the numbers are over 100. If any numbers are over 100, print
"Value over 100 found.” If no numbers are over 100, print "No values over 100
found.”

Optional further exercises: Practice-It: 7.1 - arrayDeclarationSyntax, 7.3 -
dataArray

3.
Write your code in a method named: sideSwap under the comment:
//Exercise 3

Write a method that swaps each element of the array with the one after it. If
there is an odd number of elements, leave the last one as it is.

Optional further exercises: Practice-It: 7.22 - arrayCodeTracing3

4,

Write your code in a method named: doubleArray under the comment:

//Exercise 4

Write a method that takes in one array as a parameter and returns an array that is
two copies of the parameter. Ex: [3, 4,5] — [3, 4,5, 3, 4, 5]

http://practiceit.cs.washington.edu/problem/view/bjp4/chapter7/s1-arrayDeclarationSyntax
http://practiceit.cs.washington.edu/problem/view/bjp4/chapter7/s3-dataArray
http://practiceit.cs.washington.edu/problem/view/bjp4/chapter7/s3-dataArray
http://practiceit.cs.washington.edu/problem/view/bjp4/chapter7/s1-arrayDeclarationSyntax
http://practiceit.cs.washington.edu/problem/view/bjp4/chapter7/s3-dataArray
http://practiceit.cs.washington.edu/problem/view/bjp4/chapter7/s3-dataArray
http://practiceit.cs.washington.edu/problem/view/bjp4/chapter7/s22-arrayCodeTracing3

5.
Write your code in a method named: mode under the comment:
//Exercise b

Write a method called mode that returns the most frequently occurring element of an
array of integers. Assume the array has at least one element and that every element in the
array has a value between O and 100 (inclusive). Break ties by choosing the lower value. For
example, if the array passed contains the values [27, 15, 11, 15, and 27], your method
should return 15.

Hint: You may wish to look at the Tally program in your textbook (Chapter 7) to get an idea
how to solve this problem.

