
Pulsar Catalog

Background and Motivation

When discussing provides access to event streams served by Apache Pulsar in FLIP-72, a
more detailed design description on enabling Pulsar as a catalog is proposed. Make it a
separate doc for ease of reading and checking.

Map Pulsar topics to tables
Apache Pulsar has a built-in schema registry that enables clients to upload data schemas on a
per-topic basis. Therefore, a topic is Pulsar could be regarded as a table in databases.

Map `tenant/namespace` to databases
Pulsar was created from the ground up as a multi-tenant system. In Pulsar, the authentication
provider is responsible for properly identifying clients and associating the clients with role
tokens, and authorization is the process that determines what clients are able to do.

Generally, there are 3 kinds of roles for a Pulsar instance:

-​ Superuser, who has the most privileges and can check all tenants with all their
namespaces and topics.

-​ Tenant admin, who has access to all the namespaces and topics inside the tenant.
-​ Produce or Consume, who can only see the topics its granted with.

Besides, users could be granted with multiple topics in several `tenant/namespace`.

Therefore, for all the users, a pulsar instance could be regarded as a multi-database system.
With each visible pulsar topic as a table, and the `tenant/namespace` of each topic as the
container database.

Proposal
We propose a throughout Pulsar connector implementation in Flink.

Scope
The Pulsar catalog supports the following features by extending `AbstractCatalog` API:

-​ Open and close the catalog
-​ Database operations: list, get, exists, create, drop (create and drop should first check if

the user has sufficient permissions)

https://cwiki.apache.org/confluence/display/FLINK/FLIP-72%3A+Introduce+Pulsar+Connector
https://pulsar.apache.org/
http://pulsar.apache.org/docs/en/security-overview#authentication-providers
http://pulsar.apache.org/docs/en/security-overview#authentication-providers
http://pulsar.apache.org/docs/en/security-overview#role-tokens
http://pulsar.apache.org/docs/en/security-overview#role-tokens

-​ Table operations: list, get, exist, create, drop (create and drop should first check if the
user has sufficient permissions)

Unsupported Catalog features

Operation in AbstractCatalog API Why not this operation

alterDatabase Pulsar doesn’t support store extra metadata
of a namespace

alterTable Pulsar doesn’t support store extra metadata
of a topic

Partition related operations Pulsar doesn’t support layered tree-structured
data storage, the partition in a topic has fixed
naming style and couldn’t be used to store
column values (-partition-n)

Function related operations Pulsar doesn’t provide key-based binary data
load & store

Statistics related operations AFAIK, Pulsar could only provide `rowCount`
for a table, other kinds of statistics are not
available at the moment

Some Implementation Details

HTTP Client
All catalog operations for the pulsar catalog are actually manipulating metadata of Pulsar.
Therefore, we use `PulsarAdmin` when we implementing the `AbstractCatalog` API.
PulsarAdmin is an HTTP client and talks to a Pulsar instance by specifying the `serviceHttpUrl`.
Besides, the authentication and authorization are also done while we are setting up the
connection. Please refer to PulsarAdminBuilder for all available options.

Partitioned and Non-partitioned Topic
Both partitioned and non-partitioned topic is mapped to one table in the catalog. We could
probably provide the "__partition_id" as one of the metadata columns in a table schema, just like
the other metadata fields that could be provided by Pulsar: "__topic", "__key", "__messageId",
"__publishTime", "__eventTime".

http://pulsar.apache.org/api/admin/org/apache/pulsar/client/admin/PulsarAdminBuilder

Operations

Catalog Operation Actions in Pulsar

open/close Create and close the PulsarAdmin client

listDB/getDB/createDB/dropDB List/get/create/drop tenant/namespace one
has permission

listTable/tableExists/dropTable list/check/drop a topic if permited

getTable Get a topic and convert its schema to table
schema in Flink (if permited)

createTable Create a topic, convert flink schema into its
counterparts in Pulsar and upload it to Pulsar

YAML Configuration

Option Value Default Description

serviceUrl A service URL of
your Pulsar cluster

 The Pulsar
`serviceUrl`
configuration.

adminUrl A service HTTP URL
of your Pulsar cluster

 The Pulsar
`serviceHttpUrl`
configuration.

default-database The default database
name

public/default A topic in Pulsar is
treated as a table in
Flink when using
Pulsar catalog,
therefore, `database`
is another name for
`tenant/namespace`.
The database is the
basic path for table
lookup or creation.

startingOffsets The following are “latest” `startingOffsets`

valid values:
"earliest"(streaming
and batch queries)

"latest" (streaming
query)

option controls where
a table reads data
from.

tableDefaultPartitions The default number
of partitions when a
table is created in
Table API.

5 A table in Pulsar
catalog is a topic in
Pulsar, when creating
table in Pulsar
catalog,
`table.partitions`
controls the number
of partitions when
creating a topic.

	Map Pulsar topics to tables
	Map `tenant/namespace` to databases
	Proposal
	Scope
	Unsupported Catalog features
	Some Implementation Details
	HTTP Client
	Partitioned and Non-partitioned Topic
	Operations
	YAML Configuration

