
005.11. ELECTRA

ELECTRA (Efficiently Learning an Encoder that Classifies Token Replacements
Accurately) is a transformer-based pre-training method introduced in 2020 that improves
the efficiency of pre-training language models compared to models like BERT. Unlike
traditional masked language models (MLMs) like BERT, which focus on predicting missing
tokens, ELECTRA introduces a new training objective that makes it more efficient while
achieving comparable or better performance.

ELECTRA is a pre-training method that introduces a novel task of Replaced Token
Detection (RTD), where a discriminator learns to classify whether tokens in the input
sequence have been replaced by a generator. This approach enables the model to learn
from every token in the input sequence, making it much more efficient than traditional
masked language models like BERT. ELECTRA achieves better performance with smaller
models and less computational cost, making it a popular choice for pre-training large-scale
language models.

Key Concepts of ELECTRA:

1. Generator and Discriminator Framework

ELECTRA adopts a two-part architecture during pre-training:

● Generator: This part of the model generates corrupted (incorrect) tokens by
replacing some of the tokens in the input sequence with alternative ones.

● Discriminator: Instead of trying to predict the missing tokens (like BERT), the
discriminator's job is to classify whether each token in the input sequence is the
original token or a replaced (corrupted) token generated by the generator.

This approach is somewhat similar to a Generative Adversarial Network (GAN), where the
generator creates examples, and the discriminator tries to identify whether an example is
real or fake. In ELECTRA, the generator corrupts the input, and the discriminator detects the
corruption.

2. Generator

The generator in ELECTRA is typically a small model (often a small variant of BERT), which
masks a certain percentage of tokens in the input sequence (like in BERT) and replaces
them with tokens predicted by the model. This is called Masked Language Modeling
(MLM).

● The generator learns to predict missing or corrupted tokens in the sequence.
● It is trained similarly to BERT, but it is typically smaller and less computationally

intensive.

3. Discriminator



The discriminator is the core part of ELECTRA and performs the Replaced Token
Detection (RTD) task. The input to the discriminator is the sequence of tokens where some
tokens have been replaced by the generator. The discriminator's goal is to determine
whether each token in the sequence is the original token or a replacement (fake) token.

● Replaced Token Detection: The discriminator processes the input sequence and
outputs a binary classification for each token: 1 if the token is replaced, 0 if it is the
original token.

● This task helps the model learn meaningful language representations more efficiently
because the model processes every token in the input sequence, unlike BERT,
where only the masked tokens are predicted.

4. Pre-Training Process

During pre-training, ELECTRA uses the following steps:

1. The generator corrupts the input sequence by replacing some tokens with predicted
tokens.

2. The discriminator then attempts to classify each token in the sequence as either an
original token or a replaced token.

3. Both the generator and discriminator are trained simultaneously, but more focus is
placed on the discriminator, which becomes the pre-trained model after training.

The discriminator is the part of ELECTRA that gets fine-tuned for downstream tasks, such
as text classification, sentiment analysis, or question answering.

5. Advantages of ELECTRA

● Efficiency: ELECTRA is much more efficient than BERT. While BERT only learns
from the masked tokens (which are a small fraction of the total tokens), ELECTRA
learns from every token in the input sequence, as the discriminator processes the
entire sequence. This results in better use of the input data and faster convergence
during training.

● Smaller Model Size: Since ELECTRA can achieve comparable or even better
performance than BERT with smaller models, it is more computationally efficient. The
smaller model size also makes it more practical for real-world applications where
resources may be limited.

● Better Sample Efficiency: ELECTRA learns faster from a given amount of data
compared to BERT, which means it can achieve strong performance using fewer
computational resources and training time.

6. Pre-Training Objective

The main pre-training task for ELECTRA is Replaced Token Detection (RTD), which differs
from the Masked Language Modeling (MLM) used in BERT:

● In BERT’s MLM, only a small percentage of tokens are masked and predicted,
meaning the model learns from a small subset of tokens in each sequence.



● In ELECTRA’s RTD, every token is classified as real or replaced, meaning the model
learns from every token in the sequence, making the learning process more efficient.

The loss function for ELECTRA’s pre-training is based on the discriminator’s ability to
correctly classify tokens as replaced or not.

7. Fine-Tuning

Once pre-training is complete, only the discriminator is kept, and the generator is discarded.
The pre-trained discriminator can then be fine-tuned for various downstream tasks, such as:

● Text Classification: Classifying text into categories like sentiment
(positive/negative).

● Question Answering: Predicting answers to questions based on input text.
● Named Entity Recognition (NER): Identifying entities like names, places, or

organizations in a text.

8. Comparison to BERT

● Training Objective: BERT uses Masked Language Modeling (MLM), while
ELECTRA uses Replaced Token Detection (RTD).

● Training Efficiency: ELECTRA is more efficient because it learns from every token
in the input sequence, while BERT learns from only the masked tokens.

● Model Size: ELECTRA can achieve better performance with smaller models
compared to BERT, making it computationally cheaper.

Despite being smaller and more efficient, ELECTRA achieves state-of-the-art performance
on several NLP benchmarks, demonstrating its effectiveness in learning high-quality
language representations.

Example in Python

Here’s an example of how to apply ELECTRA for an NLP task like text classification using
Hugging Face’s transformers library. In this example, we'll use a pre-trained ELECTRA
model for sentiment analysis on a dataset like IMDb.

Requirements

You’ll need to install the following libraries:

pip install transformers torch datasets

Python Code: ELECTRA for Sentiment Analysis

import torch
from transformers import ElectraTokenizer,
ElectraForSequenceClassification, AdamW
from datasets import load_dataset



from torch.utils.data import DataLoader
from transformers import get_scheduler
from tqdm.auto import tqdm

# Load the IMDb dataset
dataset = load_dataset("imdb")

# Split the dataset into train and test sets
train_dataset = dataset['train']
test_dataset = dataset['test']

# Load the pre-trained ELECTRA tokenizer and model
tokenizer = ElectraTokenizer.from_pretrained(

'google/electra-small-discriminator')
model = ElectraForSequenceClassification.from_pretrained(

'google/electra-small-discriminator', num_labels=2)

# Tokenization function
def tokenize_function(examples):

return tokenizer(
examples['text'], padding="max_length", truncation=True

)

# Tokenize the datasets
train_dataset = train_dataset.map(tokenize_function, batched=True)
test_dataset = test_dataset.map(tokenize_function, batched=True)

# Set the format for PyTorch (remove non-input columns)
train_dataset.set_format(

type="torch", columns=["input_ids", "attention_mask",
"label"])
test_dataset.set_format(

type="torch", columns=["input_ids", "attention_mask",
"label"])

# Create data loaders
train_dataloader = DataLoader(

train_dataset, shuffle=True, batch_size=8)
test_dataloader = DataLoader(test_dataset, batch_size=8)

# Move the model to GPU if available
device = torch.device("cuda") if torch.cuda.is_available() else
torch.device("cpu")
model.to(device)

# Define optimizer and learning rate scheduler
optimizer = AdamW(model.parameters(), lr=5e-5)
num_epochs = 3



num_training_steps = num_epochs * len(train_dataloader)
lr_scheduler = get_scheduler(

name="linear",
optimizer=optimizer,
num_warmup_steps=0,
num_training_steps=num_training_steps

)

# Training loop
progress_bar = tqdm(range(num_training_steps))
model.train()

for epoch in range(num_epochs):
for batch in train_dataloader:

batch = {k: v.to(device) for k, v in batch.items()}
outputs = model(**batch)
loss = outputs.loss
loss.backward()

optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
progress_bar.update(1)

# Evaluation loop
model.eval()
accuracy = 0
num_eval_steps = 0

for batch in test_dataloader:
batch = {k: v.to(device) for k, v in batch.items()}
with torch.no_grad():

outputs = model(**batch)

logits = outputs.logits
predictions = torch.argmax(logits, dim=-1)
accuracy += (predictions == batch['label']).sum().item()
num_eval_steps += len(batch['label'])

accuracy = accuracy / len(test_dataset)
print(f"Test Accuracy: {accuracy:.4f}")

# Save the fine-tuned model
model.save_pretrained("./electra-sentiment-model")



Key Components of the Code:

1. Data Loading and Tokenization:
○ We load the IMDb dataset using the Hugging Face datasets library. IMDb

is a popular dataset for binary sentiment classification (positive/negative).
○ The ELECTRA tokenizer is used to tokenize the input text. This tokenizer

processes the input text into token IDs, adds padding, and truncates longer
sequences.

2. Model Definition:
○ We use ELECTRA's discriminator

(ElectraForSequenceClassification) from the Hugging Face
transformers library. The model is fine-tuned for binary classification
(positive/negative sentiment), and we set num_labels=2 since IMDb is a
binary classification task.

○ The discriminator detects whether each token has been replaced, making
ELECTRA particularly effective for tasks like text classification.

3. Training Setup:
○ The model is fine-tuned using the AdamW optimizer with a linear learning

rate scheduler. We specify a learning rate of 5e-5, and the training runs for 3
epochs.

○ The model's parameters are updated using backpropagation during each
training step.

4. Evaluation:
○ After training, the model is evaluated on the test set. Accuracy is computed by

comparing the model's predictions with the actual labels in the test data.
○ The model is put in evaluation mode (model.eval()), and predictions are

made without updating the model's weights.
5. Saving the Model:

○ After training, the fine-tuned model is saved using
model.save_pretrained(). This allows you to reuse the model later for
inference or further fine-tuning.

Output:

The model will print the test accuracy after training, showing how well the fine-tuned
ELECTRA model performed on the sentiment classification task. For example, it might
output something like:

Test Accuracy: 0.9456

Notes:

● Fine-Tuning ELECTRA: In this example, we're fine-tuning the ELECTRA
discriminator for text classification. ELECTRA learns more efficiently than models like
BERT because it processes every token in the sequence, not just masked tokens.



● Other Use Cases: You can fine-tune ELECTRA for various other tasks such as
question answering, named entity recognition, or sentence pair classification by
adjusting the task-specific head (classification layer) and dataset.

This example demonstrates how to use ELECTRA for sentiment analysis, and the same
approach can be applied to other NLP tasks.


