Published using Google Docs
Kurvendiskussion: fk(x) = 4·x^4 - 2·k^2·x^2 + 2/9·k^4
Updated automatically every 5 minutes

Kurvendiskussion: fk(x) = 4·x^4 - 2·k^2·x^2 + 2/9·k^4

Funktion und Ableitungen:

fk(x) = 4·x^4 - 2·k^2·x^2 + 2/9·k^4

fk'(x) = 16·x^3 - 4·k^2·x

fk''(x) = 48·x^2 - 4·k^2

Symmetrie

Achsensymmetrie zur Y-Achse weil alle Potenzen von x gerade sind.

Y-Achsenabschnitt f(0)

fk(0) = 4·0^4 - 2·k^2·0^2 + 2/9·k^4 = 2/9·k^4

Nullstellen fk(x) = 0

fk(x) = 4·x^4 - 2·k^2·x^2 + 2/9·k^4 = 2/9·(3·x^2 - k^2)·(6·x^2 - k^2)

3·x^2 - k^2 = 0

x = ± √3/3·k

6·x^2 - k^2 = 0

x = ± √6/6·k

Extremstellen fk'(x) = 0

16·x^3 - 4·k^2·x = 4·x·(4·x^2 - k^2) = 0

4·x = 0

x = 0

4·x^2 - k^2 = 0

x = ± k/2

fk(0) = 2/9·k^4   [Hochpunkt]

fk(± k/2) = - k^4/36   [Tiefpunkt]

Wendestellen fk''(x) = 0

48·x^2 - 4·k^2

x = ± √3/6·k

fk(± √3/6·k) = k^4/12   [Wendepunkt]

Skizze