
Apply filters to SQL queries 

Project description 

As a security analyst at a large organization, I investigated potential security concerns by 
filtering login activity and employee data using SQL queries. This project demonstrates my 
ability to retrieve specific information using SQL AND, OR, NOT, and LIKE operators. I analyzed 
login attempts by time, date, country, and success status, and filtered employee data based on 
department and office location. These queries support incident investigation and system 
update planning. 

Retrieve after hours failed login attempts 

 

This SQL query filters the log_in_attempts table to find all login attempts that were 
unsuccessful and made after business hours (18:00). 

●​ The condition login_time > '18:00' retrieves only those records where login 
attempts occurred after 6:00 PM.​
 

●​ The condition success = 0 filters for failed login attempts (0 represents a Boolean 
FALSE in MySQL).​
By combining these filters with the AND operator, the query returns only the after-hours 
failed login attempts, helping identify suspicious access patterns outside of normal 
working hours. 



 

●​ Query Result (After Hours Failed Logins) 

This screenshot displays the executed SQL query along with the retrieved results 
from the log_in_attempts table. It confirms that the query accurately filtered failed 
login attempts (success = 0) that occurred after 18:00 (6 PM). The output includes 
multiple rows of data, each representing a login attempt that matches the specified 
criteria — demonstrating successful application of SQL filtering using the AND operator. 

 

Retrieve login attempts on specific dates 

This SQL query is used to retrieve all login attempts that occurred on two specific dates: May 8, 
2022, and May 9, 2022. These dates are important because a suspicious event was detected on 
May 9, and investigating the day before can help uncover any related activity. 



●​ The SELECT * command retrieves all columns from the log_in_attempts table.​
 

●​ The WHERE clause applies a filter to return only the rows where the login_date is 
either '2022-05-08' OR '2022-05-09'.​
 

●​ The OR operator is used to include multiple specific conditions for the same column. 

 



●​ Output of Query for Specific Dates 

This screenshot displays the output of the SQL query that filtered login attempts from 
the log_in_attempts table based on two specific dates: 2022-05-08 and 
2022-05-09. The query successfully returned all records matching the specified 
login_date values, including relevant fields such as: 

●​ event_id​
 

●​ username​
 

●​ login_date and login_time​
 

●​ country​
 

●​ ip_address​
 

●​ success (where 0 indicates failed login)​
 

This data will help the security team investigate activity around the date of a suspicious event 
and understand user behavior leading up to and during the incident. 

Retrieve login attempts outside of Mexico 

 

In this step, the objective was to retrieve all login attempts that did not originate in Mexico. 
The country column in the database includes both "MEX" and "MEXICO" for Mexican-origin 
attempts. To filter out these, I used the NOT operator combined with LIKE 'MEX%'. 

●​ LIKE 'MEX%' matches any country value starting with "MEX", covering both "MEX" 
and "MEXICO".​
 

●​ The NOT operator excludes all these matching entries from the result.​
 



This ensures that only login attempts from countries other than Mexico are returned. It 
helps narrow down the investigation to external sources of suspicious activity. 

 

The output displayed is the result of a SQL query that filtered all login attempts which did not 
originate from Mexico. To achieve this, the NOT and LIKE operators were used with the 
pattern 'MEX%', which successfully excluded both "MEX" and "MEXICO" entries from the 
results. 

This query was essential to identify potentially suspicious or unauthorized login activity from 
outside the expected region. The country column values in the result confirm the presence of 
logins from the US, Canada, and other countries, but none from Mexico. 



●​ Partial results of login attempts that did not originate in Mexico, retrieved using the NOT 
+ LIKE operator. Full results returned 144 records. 

Retrieve employees in Marketing 

 

This SQL query retrieves all employee records from the employees table where the 
department is Marketing and the office is located in the East building. 

●​ The condition department = 'Marketing' filters the data to include only 
employees in the Marketing department.​
 

●​ The condition office LIKE 'East-%' uses the LIKE operator with a wildcard (%) to 
include all office values that start with "East-", such as East-170 or East-320.​
 

●​ The AND operator ensures both conditions must be true — meaning the result will only 
include Marketing employees located in East building offices.​
 

This helps the team target specific employee machines for security updates based on both 
department and location. 



 

The output displays 7 employees from the employees table who belong to the Marketing 
department and are located in offices that begin with "East-", such as East-170, East-195, and 
East-460.​
This confirms that the query successfully applied both conditions (department = 
'Marketing' AND office LIKE 'East-%') and returned only the relevant employee 
records needed for the update task. 

This result will help the team perform targeted security updates on machines used by these 
Marketing employees in the East building. 

Retrieve employees in Finance or Sales 

To support a new security update, I needed to identify all employees working in the Finance or 
Sales departments. These departments are listed in the department column of the employees 
table. 

I used the OR operator in the SQL query to filter for both conditions. It was necessary to fully 
write out each condition and reference the department column each time to ensure the query 
worked as intended. 



 
●​ The query retrieves all columns from the employees table.​

 
●​ It filters results where the department is either 'Finance' or 'Sales' using the OR 

operator.​
 

●​ This helps isolate relevant employees whose systems require targeted updates. 



 
●​ The query successfully returned a list of employees from the employees table who 

work in either the Finance or Sales departments. All columns for the matched records 
were displayed. This output will help the team identify and apply the necessary system 
updates for users in these departments. 

●​ Each record confirms the correct filtering using the OR condition across the 
department column. The result includes users across multiple offices, reflecting a 
complete dataset for both departments. 



Retrieve all employees not in IT 

 

In this query, I retrieved all employee records except those who belong to the Information 
Technology department. I used the != operator (which acts as the NOT condition) to filter out 
entries where the department column value is 'Information Technology'. 

This ensures that the result set includes only those employees who still require the system 
update, as the IT department's machines have already been updated. 

Purpose: 

To assist the team in identifying which employee machines still need updating by excluding 
those already handled (in the IT department). 



 

This SQL query successfully retrieved all employees not in the Information Technology 
department using the != operator on the department column. The output includes fields like 
employee_id, device_id, username, department, and office. 

Employees shown belong to various departments such as Marketing, Finance, Sales, and 
Human Resources, with office locations distributed across East, West, North, South, and 
Central regions. 

Total rows returned: 161​
This confirms that the filter was correctly applied to exclude IT department employees from 
the update process. 

Summary 
In this project, I ran a series of SQL queries to support a security investigation and system 
update task. I retrieved failed login attempts outside office hours, filtered activity based on 
specific dates, excluded login attempts from Mexico using pattern matching with NOT LIKE, 



and identified employees based on department and location criteria. These queries 
demonstrate my ability to use complex SQL filters for security use cases, including time-based 
analysis, pattern matching, and multi-condition filtering. The outputs were validated with 
screenshots and documented for professional reporting. 
 


	Apply filters to SQL queries 
	Project description 
	Retrieve after hours failed login attempts 
	Retrieve login attempts on specific dates 
	Retrieve login attempts outside of Mexico 
	Retrieve employees in Marketing 
	Retrieve employees in Finance or Sales 
	Retrieve all employees not in IT 
	Summary 


