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ABSTRACT

The conventional wisdom in Educational Data Mining (EDM) suggests that a superior
model fits the data better. However, this perspective overlooks a critical aspect: models that
prioritize prediction accuracy often fail to provide scientifically or practically meaningful
interpretations and explanations. Interpretations and explanations are crucial for scientific
insight and are useful for practical applications, especially from the human-computer
interaction perspective. For example, Deep Knowledge Tracing (DKT) has been
demonstrated to have a superior predictive power of student performance; however, its
parameters do not have an association with any latent constructs, so there have been no
scientific insights or practical applications resulting from it. In contrast, Additive Factor
Model (AFM) often underperforms DKT in prediction accuracy, but its parameter estimates
have meaningful interpretations (e.g., the slope illustrates the rate of learning of knowledge
components) that lead to new scientific insights (e.g. improved cognitive models discovery)
and results in useful practical applications (e.g. an intelligent tutoring system redesign). In
this thesis, | argue for a claim that interpretations and explanations are what we need and
not interpretable or explainable models that are not interpreted or explained, especially in
the context of EDM. | aim to develop inherently interpretable or "meaningful" models that
transcend post-hoc explanations of black-box models. Specifically, the variables and
parameters of these meaningful models are associated with meaningful latent variables.

I make this argument with several examples of scenarios where the existing mechanisms
or models are insufficient to produce meaningful interpretations and suggest strategies to
investigate and fix them. For example, Performance Factor Analysis (PFA) has been
demonstrated to outperform AFM, but we demonstrated that PFA parameters are
confounded, which resulted in ambiguous interpretations. We then proposed an improved
model that not only de-confound the parameters but also presented meaningful
interpretations that lead to insights on the real-student datasets.

In my thesis, leveraging my experience from past projects, | propose generalized strategies
for developing meaningful models and apply them to develop a model to capture spacing
effect. Additionally, | will develop a recommender system to suggest an optimal study
schedule based on the newly developed model to demonstrate the superiority of
meaningful models, compared to black-box models, in practical applications. | will conduct
in-vivo studies with middle school students in the biology domain to demonstrate the

effectiveness of the system.
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ACRONYMS

EDM Educational Data Mining
DKT Deep Knowledge Tracing
PFA Performance Factor Analysis
BKT Bayesian Knowledge Tracing
AFM Additive Factor Model

ITS Intelligent Tutoring System

RMSE Root Mean Squared Error

BIC Bayesian Information Criterion

AUC Area Under the Receiver Operating Characteristic Curve
RNN Recurrent Neural Network
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CHAPTER 1
INTRODUCTION

Educational Data Mining (EDM) is a crucial field in learning sciences that leverages data
analysis to enhance educational outcomes and personalize learning experiences. By
analyzing large amounts of educational data, EDM researchers can discover patterns
and insights that lead to improvements in pedagogy design, curriculum development,
and student intervention. One prominent example of EDM is student modeling with
knowledge tracing — models that estimate students' mastery of specific skills over time,
which has been widely used in Intelligent Tutoring Systems (ITS) to adaptively assess
students’ knowledge states.

The recent trend in EDM, and in data mining more generally, suggests that a
superior model fits the data better [22]. In other words, a model that performs better on
fit statistics, such as root mean squared error (RMSE) [9], bayesian information criterion
(BIC) [23], or area under the receiver operating characteristic curve (AUC) [8], is usually
considered a better model. However, this perspective overlooks a critical aspect: models
that prioritize prediction accuracy often fail to provide scientifically or practically
meaningful interpretations and explanations. While accurate prediction could be useful,
the focus on prediction accuracy alone can overshadow the importance of
understanding the underlying mechanisms and generalizable explanations driving these
predictions. My goal is to develop inherently interpretable or “meaningful” models that go
beyond post-hoc explanations of black-box models toward designing models that are
inherently interpretable by providing not just better predictions but also estimations of
parameters that provide an explanation of those predictions. Particularly, the parameters
of these meaningful models correspond to latent variables, providing insights into the
educational processes they represent.

Why are these inherently interpretable models important? Interpretations and
explanations are crucial for scientific insight and are useful for practical applications,
especially from the human-computer interaction perspective. Many existing models do
provide either scientific insight or practical application. For example, Deep Knowledge
Tracing (DKT) [17], a knowledge tracing model based on Recurrent Neural Network

(RNN), has been demonstrated to predict student performance better than traditional
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approaches based on logistic regression [1]; however, its parameters do not have an
association with any latent constructs and there have been no scientific insights or
practical applications resulting from it [21]. In contrast, Additive Factor Model (AFM) [3],
a knowledge tracing model based on logistic regression, often underperforms DKT in
prediction accuracy, but its parameter estimates have meaningful interpretations (e.g.,
the slope illustrates the rate of learning of knowledge components) that lead to new
scientific insights (e.g. improved cognitive models discovery) and results in useful
practical applications (e.g. an intelligent tutoring system redesign) [13].

It is likely a misconception that complex black-box models are always superior in
terms of predictive performance. In many cases, simpler, interpretable models can
achieve comparable accuracy [6, 16, 20, 26, 28], while still providing valuable insights
into the learning mechanisms and pedagogy [11, 13]. For example, it has been shown
that a logistic regression model, with the right set of features, was as good as DKT in
predicting student performances on several datasets, while also preserving the
meaningful interpretation of their parameter estimates [6, 14, 20]. Emphasizing the
development and use of inherently interpretable models in EDM can lead to more
effective and actionable educational interventions. More examples from my previous
works are discussed further in Chapter 3.

In this thesis, | propose generalized strategies for developing meaningful models
based on insights from my prior works. Then, | will demonstrate the utility of the
proposed strategy by applying them to develop a new knowledge tracing model that
effectively captures the spacing effect while maintaining the interpretable parameter
estimates. Furthermore, to demonstrate the superiority of meaningful models, compared
to black-box models, in practical applications, | will develop a recommender system to
suggest an optimal study schedule based on the newly developed model. To complete
my thesis, | propose conducting in-vivo studies with middle school students in the

biology domain to demonstrate the effectiveness of the system.

This document is organized as follows:

In Chapter 2, | detail the background and related work. The first section briefly
overviews the literature on models’ explainability and interpretability, and the relevance
of these arguments in the context of EDM. In the next section, | discuss the history and
existing works on knowledge tracing models and models of human learning. In Chapter

3, | briefly describe examples of my related previous work in building meaningful models
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and illustrate connections between these previous works and this thesis. Lastly, Chapter
4 describes the proposed work to complete my thesis. | discuss the proposed
generalized strategies for developing meaningful models, and provide further detail on

the new model, its application, and the proposed in-vivo study.



CHAPTER 2
BACKGROUND

2.1 Model Interpretability

The widespread use of black-box machine learning models in high-stakes
decision-making areas, such as healthcare and criminal justice, has led to significant
challenges and ethical concerns [27]. Similarly the field of EDM has prioritized prediction
accuracy such that black-box models have been increasingly used [5, 7]. However,
black-box models not only present challenges for applications in high-stakes domains,
but also fail, by themselves, to provide useful insights, scientifically or practically.

While some believe that developing methods to explain these black-box models
can mitigate these issues [10], this approach often perpetuates problematic practices. In
response, Rudin et al. have proposed that the preferable strategy is to design models
that are inherently interpretable by design [22]. This perspective underscores the
fundamental difference between explaining black-box models and using inherently
interpretable models, such that explanation is post hoc and does not lead to the
understanding of the underlying mechanisms of the events or the nature of the data.
Instead, meaningful models provide transparency and accountability, which are crucial in
applications that directly impact stakeholders and could lead to useful insights.

The problem is that it is almost always easier to find an accurate-but-complex
model than an accurate-yet-simple model. However, Semenova et al. pointed out that,
given a predictive model, there is usually a large equivalence set of similarly accurate
models known as the Rashomon set. This set includes some models that are highly
parameterized and difficult to understand, while others are simpler and more
interpretable [24]. Therefore, given an accurate black-box model, an inherently
interpretable model is likely to exist but unlikely to be produced by deep learning.

Usually, a machine learning model would be considered interpretable when it is
simple enough (e.g. smaller number of parameters) for humans to comprehend and
understand the relationship between input features and output prediction. However, in
the context of this thesis, | aim to expand on the definition of interpretable models to

“‘meaningful models”, such that the input features themselves need to be meaningful and
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represent some latent constructs. Moreover, the parameter estimates from meaningful
models should provide insights that lead to the understanding of the underlying
mechanisms or practical applications. For instance, consider a simple linear regression
model predicting the probability of diabetes. If one of its features is a complex and
arbitrary computation, such as weight multiplied by the number of siblings, the model
may not be genuinely interpretable. Even though the model predicts an outcome, the
inclusion of obscure or unrelated features can obscure its interpretability, making it
challenging to understand how and why certain predictions are made. Chapter 3
discusses examples of my previous work developing models that are interpretable by

this expanded definition.

2.2 Knowledge Tracing and Models of Learning

The main objective of EDM is to improve educational systems by applying data mining
techniques to educational data, such as student interactions with an ITS, to obtain useful
insights, especially on the students' learning processes. These insights can then help
refine teaching strategies and enhance student achievement. Knowledge tracing models
are among the most popular models that have been explored in the field of EDM. These
models take students’ past performance on related problems associated with a set of
knowledge components [12], as inputs and output predicted student performance on a
particular problem or a student’s mastery on a certain knowledge component.
Traditionally, there are two popular approaches to knowledge tracing models.
Early attempts based on a Bayesian inference approach, which usually relied on
simplifying the model assumptions (e.g. student’'s mastery is a binary state). Bayesian
Knowledge Tracing (BKT) [4], which models student mastery as a latent variable in a
simple Hidden Markov Model [2], has been widely used in the real-world ITSs and
shown to be reasonably effective for mastery learning and problem selection [25].
Another popular approach to knowledge tracing models is a series of models based on
logistic regression models, such as Additive Factor Model (AFM) and Performance
Factor Analysis (PFA) [15]. In contrast to BKT, these models do not assume student
mastery as a binary variable but use a parametric factor analysis approach to trace a
student's knowledge based on a variety of factors, such as number of previous
opportunities. Recently, with the rising popularity of neural networks, a large number of

knowledge tracing models based on different deep learning techniques has been
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introduced. Deep Knowledge Tracing (DKT) is the pioneer of the deep learning based
approach, which is based on a sequence model called Recurrent Neural Network
(RNN). In the earlier works, DKT has been demonstrated to outperform the existing
models, such as BKT and PFA, in many scenarios. However, recent work has further
studied its pitfalls and showed that these deep learning models do not always
outperform traditional models; model success depends on the nature of the dataset [6,
20, 26, 28].

In the context of interpretability, traditional models based on Bayesian inference
and logistic regression usually have parameters that have meaningful interpretations,
intentionally or not, due to the simplicity of the models and variables that are based on
related latent constructs, such as a probability that a student makes a mistake when
applying a known skill or a probability that a student guesses an answer correctly.
However, deep learning based knowledge tracing models often forgo interpretability for
potentially stronger predictive power due to the extremely large amount of parameters
that these models usually have. On a related note, the traditional evaluation methods for
knowledge tracing models have focused on goodness-of-fit (e.g. AIC and BIC) and
cross-validation. However, recent trends emphasize the use of metrics like AUC. This
shift is driven by the increasing complexity and number of parameters in the deep
learning based models, which have a strong negative impact on metrics like BIC. In my
previous work, it is demonstrated that relying solely on AUC might not always accurately
represent the quality of knowledge tracing models in the practical applications [6, 16, 20,
26].

It could be argued that the primary goal of knowledge tracing is to predict student
outcomes accurately. However, prior studies indicate that we can gain much more from
parameter estimates, providing deeper insights into learning processes [11, 13]. If the
objective of EDM is to enhance our understanding of learning, which leads to improved
student outcomes, models that naively predict student’s performance without offering
interpretability that can result in useful insights could be considered inadequate. Despite
the utility of such predictions, their contribution to the broader educational objectives

remains limited.


https://www.zotero.org/google-docs/?PhgDae
https://www.zotero.org/google-docs/?PhgDae
https://www.zotero.org/google-docs/?QO9RwB
https://www.zotero.org/google-docs/?QO9RwB
https://www.zotero.org/google-docs/?g7xpG9

CHAPTER 3
PRIOR WORK IN BUILDING MEANINGFUL MODELS

3.1 Content Matters: A Computational Investigation into the Effectiveness

of Retrieval Practice and Worked Examples

This section was adapted from my published work [18]:
Rachatasumrit, N., Carvalho, P., Koedinger, K. (2023), Content Matters: A
Computational Investigation into the Effectiveness of Retrieval Practice and
Worked Examples. AIED 2023, Proceedings The 24th International Conference

on Artificial Intelligence in Education

In this work we argue that artificial intelligence models of learning can contribute precise
theory to explain surprising student learning phenomena. In some past studies of
student learning, practice produces better learning than studying examples, whereas
other studies show the opposite result. We reconcile and explain this apparent
contradiction by suggesting that retrieval practice and example study involve different
learning cognitive processes, memorization and induction, respectively, and that each
process is optimal for learning different types of knowledge. We implement and test this
theoretical explanation by extending an Al model of human cognition — the Apprentice
Learner Architecture (AL) — to include both memory and induction processes and
comparing the behavior of the simulated learners with and without a forgetting
mechanism to the behavior of human participants in a laboratory study. We show that,
compared to simulated learners without forgetting, the behavior of simulated learners
with forgetting matches that of human participants better. Simulated learners with
forgetting learn best using retrieval practice in situations that emphasize memorization
(such as learning facts or simple associations), whereas studying examples improves
learning in situations where there are multiple pieces of information available and
induction and generalization are necessary (such as when learning skills or procedures).

This work is an example of a computational model that mainly focuses on the
underlying mechanisms, which make them inherently interpretable. It allows us to make

changes (e.g. adding a memory mechanism) that enhance its capability to model new
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phenomena while maintaining its interpretability. From the experiment, we also gained
insight into how inductive learning and memory mechanisms interact differently with

different types of content (e.g. fact vs skill).

3.2 Good Fit Bad Policy: Why Fit Statistics are a Biased Measure of

Knowledge Tracer Quality

This section was adapted from my published work [20]:

Rachatasumrit, N., Weitecamp, D., Koedinger, K. (2024), Good Fit Bad Policy:
Why Fit Statistics are a Biased Measure of Knowledge Tracer Quality. AIED
2024, Proceedings The 25th International Conference on Artificial Intelligence in

Education.

Knowledge tracers are typically evaluated on the basis of the goodness-of-fit of their
underlying student performance models. However, for the purposes of supporting
mastery learning the true measure of a good knowledge tracer is not its goodness-of-fit,
but the degree to which it optimally selects next problem items. In this context, a
knowledge tracer should minimize under-practice to ensure students master learning
materials and minimize over-practice to reduce wasted time. Prior work has suggested
that fit-statistic-based measures of knowledge tracer quality may misrank the relative
quality of knowledge tracers’ item selection. In this work, we evaluate this claim by
measuring over- and under-practice directly in synthetic data drawn from ground-truth
learning curves. We conduct an experiment with 3 well-known student performance
models: Performance Factor Analysis (PFA), BestLR, and Deep Knowledge Tracing
(DKT), and find that in 43% of the synthetic datasets, the models with higher measures
of overall predictive performance (e.g. AUC and MSE) were worse than a comparison
model with a lower predictive performance at minimizing the number of predictions that
would lead to over-practice and under-practice attempts. These results support the
hypothesis that overall fit statistics are not a reliable measure of a knowledge tracer’s
ability to optimally select next items for students, and bring into question the validity of

traditional methods of knowledge tracer comparison.

11
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In this work, we have demonstrated that black-box models like DKT do not
always yield a better prediction performance compared to more interpretable models like
PFA and BestLR, especially when we consider the metrics that are directly related to

real-world applications like number of over-practices and under-practices.

3.3 Toward Improving Student Model Estimates through Assistance Scores

in Principle and in Practice

This section was adapted from my published work [19]:

Rachatasumrit, N., Koedinger, K.R. (2021), Toward Improving Student Model
Estimates through Assistance Scores in Principle and in Practice. EDM 2021:

Proceedings of the 14th International Conference on Educational Data Mining.

Student modeling is useful in educational research and technology development due to
a capability to estimate latent student attributes. Widely used approaches, such as the
Additive Factors Model (AFM), have shown satisfactory results, but they can only handle
binary outcomes, which may yield potential information loss. In this work, we propose a
new partial credit modeling approach, PC-AFM, to support multi-valued outcomes. We
focus particularly on the amount of assistance, that is, the number of error feedback and
hint messages a student needs to get a problem step correct. Because errors and hint
requests may not only derive from student ability, but also from non-cognitive factors
(e.g., students may game the system), we first test PC-AFM on synthetic data where
non-cognitive factors source of variation is not present. We confirm that PC-AFM is
indeed better than AFM in recovering the true student and knowledge component (KC)
parameters and even predicts student error rates better than a model fit to error rates.
We then apply the approach to six real-world datasets and find that PC-AFM
outperforms AFM in reliable estimation of KC parameters and produces better
generalization to new students, which requires better KC estimates. However, consistent
with the hypothesis that student assistance behavior is driven by motivational or
meta-cognitive factors beyond their ability, we found that PC-AFM was not better in

reliable estimation of student parameters nor in generalization across items, which
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requires accurate student estimates. We propose cross-measure cross-validation as a
general method for comparing alternative measurement models for the same desired

latent outcome.

This work is an example of how we identify an issue with the configuration of an
existing model (binary outcomes in AFM), which causes it to not be interpretable in
some scenarios and develop a new meaningful model (PC-AFM) that addresses the
identified issue. When we applied PC-AFM with real-student datasets, we found that KC
parameter estimates are more reliable than student parameter estimates, which led to
the insight that the assistance score was heavily influenced by factors beyond their
ability, such as motivations. This analysis was only possible because of the interpretable
nature of the parameters of PC-AFM, which supports our argument that meaningful

models are important in the field of EDM.

3.4 Beyond Accuracy: Embracing Meaningful Parameters in Educational

Data Mining

This section was adapted from my published work:

Rachatasumrit, N., Carvalho, P.F., Koedinger, K.R. (2024), Beyond Accuracy:
Embracing Meaningful Parameters in Educational Data Mining. EDM 2024

Proceedings of the 17th International Conference on Educational Data Mining.

What does it mean for a model to be a better model? One conceptualization, indeed a
common one in Educational Data Mining, is that a better model is the one that fits the
data better, that is, higher prediction accuracy. However, oftentimes, models that
maximize prediction accuracy do not provide meaningful parameter estimates, making
them less useful for building theory and practice. Here we argue that models that
provide meaningful parameters are better models and, indeed, often also provide higher
prediction accuracy. To illustrate our argument, we investigate the Performance Factor
Analysis (PFA) model and the Additive Factors Model (AFM). PFA often has higher
prediction accuracy than the AFM. However, PFA's parameter estimates are ambiguous
and confounded. We propose more interpretable models (AFMh and PFAh) designed to

address the confounded parameters and use synthetic data to demonstrate PFA’s

13



parameter interpretability issues. The results from the experiment with 27 real-world
datasets also support our claims and show that more meaningful models will also

produce better predictions.
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CHAPTER 4
PROPOSED WORK

In my research so far, | have shown that inherently interpretable or “meaningful” models
based on cognitive models can be as capable as black-box models when it comes to
predicting student learning outcomes. Meaningful models have an advantage in that
they also lead to insights, both practical and scientific, that result in actual applications
and use cases. For instance, while the Additive Factor Model (AFM) often falls short of
DKT in prediction accuracy, its parameter estimates offer valuable interpretations (such
as the slope representing the learning rate of knowledge components). These insights
can drive new scientific discoveries (like enhanced cognitive models) and lead to
practical applications (such as redesigning intelligent tutoring systems). In prior work, we
have explored meaningful models that capture the non-binary nature of students’
learning outcomes, the impact of content types on learning, and student-KC interactions,
and demonstrated the insights that we acquired from those models. Based on this work,

| propose generalized strategies for developing meaningful models:

S1: When you identify a confounded latent variable in the predictive model,
formulate a new observable or computed variable/measure? and a new

associated latent variable to help remove the confound.

S2: When a complex less meaningful model predicts better than a simpler more
meaningful model, try to find out under what circumstances it is better. Use those
circumstances to hypothesize and test new observed, computed, and/or latent

variables.
S3: When you discover that a complex model (e.g., a deep learning model or
LLM) is identifying an indicator variable that is masking a correlated causal

variable, create a model that prefers the causal variable.

As an example, my prior work on PFAh illustrates the application of these strategies. In

that work, | demonstrated that PFA (a complex model) predicts better than AFM (a
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simpler model) particularly when there are differences in learning rate between
successful and failed attempts or strong student-KC interactions (S2). In the work, the
success and failure slopes in PFA are also shown to be confounded by differences in
learning rate and student-KC interactions (S1). The new computed variable based on
the ratio of the history of success attempts was then proposed to help remove the

confound, which led to the new model that was more interpretable.

In the proposed work, | will develop a new meaningful model in a new domain utilizing
these strategies. In particular, the learning principle and data that | will focus on relate to
the spacing effect. Spacing is one of the most important attributes that could affect
learning, and its impact has been studied to a great extent; however, there is no existing
quantitative model that focuses on the parameters interpretability. Additionally, unlike
previous work where | have only discussed potential use cases of the acquired insights
from the models, | will close the loop by developing an application based on the new
model and conduct an experimental comparison that tests whether an application built
based on an meaningful model is more effective than one based on a black-box model.

In this proposed work, | will

1. Develop a knowledge tracing model that captures spacing effects while
preserving meaningful interpretation of their parameter estimates.

2. Build a system based on the knowledge tracing model that can suggest optimal
study schedule and evaluate it with real students.

3. Conduct an in vivo study with Podsie to evaluate the system from (2) and
compare the system against systems that are based on black-box models. (See

details in Evaluation)

4.1 Data

During the model development, | will use a combination of real-student data and
simulated data. The real student data will consist of existing data from DataShop and
newly collected data with Podsie, a personalized learning tool, from middle school STEM
students (Biology, Physics, Math, and Chemistry classes). The simulated data will be

generated, based on a combination of ACT-R memory model, which can be used to

16



calculate the retrieval probabilities of information based on its activation levels, and
some existing knowledge tracing models, varying among different content types,
spacing, KC'’s difficulty, and students’ ability. Afterwards, we will deploy the knowledge
tracing model in the in-vivo study by integrating it in Podsie to suggest the optimized
study schedule to students and evaluate the student's learning outcome improvement

from following the suggested schedule via Podsie.

4.2 Developing a meaningful model of Spacing

The main challenge for this new model is to successfully employ the strategies to
identify and add new, maybe computed, variables that are capable of capturing spacing
effects and include them in the linear models. This knowledge tracer would add a model
forgetting and spacing effect to the existing learning growth component in the logistic
regression AFM family of models (AFM, iAFM, or PFAh). Examples of potential variables
are a geometric mean of the spaces between prior attempts or a variable based on the
average distance between optimal and actual spacing, where we computed optimal
spacing from the number of prior opportunities and duration from last opportunity to
predicted one. These variables will allow us to capture a sequence of spaces in a single
variable, but the downside is that it ignores the order of the prior attempts which is an
important part of the spacing effect when an expanding strategy is used. During the
development, | will come up with a list of potential variables and experiment with both
simulated data and real-student data to evaluate the pros and cons for each of them
[26].

4.3 Demonstrate an Application that uses the Meaningful Model works

better than one using a Complex Black-box model

To demonstrate that meaningful models are more effective in practical applications, | will
leverage the newly developed knowledge tracing model to build a recommender system
that suggests an optimal practice schedule for a student-KC pair given a desired

retention interval, the time of the first and last practice, and the number of repetitions. |
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will investigate two potential solutions for the proposed system. Firstly, | will attempt to
derive a closed-form solution from the parameters learning from fitting the data in the
model. This approach will only be possible with inherently interpretable models that
allow us to attain meaningful parameters, in contrast to black-box models where there is
no meaningful parameter to utilize. Another solution is to develop a policy for optimal
practice schedule using reinforcement learning approaches and leverage the knowledge

tracing model in a reward or Q-value function.

4.4 Timeline of Completion

My goal is to complete the dissertation by May 2025. This gives me enough time to
develop the new knowledge tracing models and the optimal schedule recommender, and
conduct the in-vivo studies with Podsie in the Spring 2025. My proposed schedule is

shown below:

e July 22, 2024: Thesis proposal

e August 2024 - October 2024: Model and application development
e Late Fall 2024 / Early Spring 2025: In-vivo study with Podsie

e April 2025 - May 2025: Thesis writing & Defense

18
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