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ABSTRACT 
 

The conventional wisdom in Educational Data Mining (EDM) suggests that a superior 

model fits the data better. However, this perspective overlooks a critical aspect: models that 

prioritize prediction accuracy often fail to provide scientifically or practically meaningful 

interpretations and explanations. Interpretations and explanations are crucial for scientific 

insight and are useful for practical applications, especially from the human-computer 

interaction perspective. For example, Deep Knowledge Tracing (DKT) has been 

demonstrated to have a superior predictive power of student performance; however, its 

parameters do not have an association with any latent constructs, so there have been no 

scientific insights or practical applications resulting from it. In contrast, Additive Factor 

Model (AFM) often underperforms DKT in prediction accuracy, but its parameter estimates 

have meaningful interpretations (e.g., the slope illustrates the rate of learning of knowledge 

components) that lead to new scientific insights (e.g. improved cognitive models discovery) 

and results in useful practical applications (e.g. an intelligent tutoring system redesign). In 

this thesis, I argue for a claim that interpretations and explanations are what we need and 

not interpretable or explainable models that are not interpreted or explained, especially in 

the context of EDM. I aim to develop inherently interpretable or "meaningful" models that 

transcend post-hoc explanations of black-box models. Specifically, the variables and 

parameters of these meaningful models are associated with meaningful latent variables. 

I make this argument with several examples of scenarios where the existing mechanisms 

or models are insufficient to produce meaningful interpretations and suggest strategies to 

investigate and fix them. For example, Performance Factor Analysis (PFA) has been 

demonstrated to outperform AFM, but we demonstrated that PFA parameters are 

confounded, which resulted in ambiguous interpretations. We then proposed an improved 

model that not only de-confound the parameters but also presented meaningful 

interpretations that lead to insights on the real-student datasets. 

In my thesis, leveraging my experience from past projects, I propose generalized strategies 

for developing meaningful models and apply them to develop a model to capture spacing 

effect. Additionally, I will develop a recommender system to suggest an optimal study 

schedule based on the newly developed model to demonstrate the superiority of 

meaningful models, compared to black-box models, in practical applications. I will conduct 

in-vivo studies with middle school students in the biology domain to demonstrate the 

effectiveness of the system.  
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CHAPTER 1 
INTRODUCTION 

 

 

Educational Data Mining (EDM) is a crucial field in learning sciences that leverages data 

analysis to enhance educational outcomes and personalize learning experiences. By 

analyzing large amounts of educational data, EDM researchers can discover patterns 

and insights that lead to improvements in pedagogy design, curriculum development, 

and student intervention. One prominent example of EDM is student modeling with 

knowledge tracing — models that estimate students' mastery of specific skills over time, 

which has been widely used in Intelligent Tutoring Systems (ITS) to adaptively assess 

students’ knowledge states. 

The recent trend in EDM, and in data mining more generally, suggests that a 

superior model fits the data better [22]. In other words, a model that performs better on 

fit statistics, such as root mean squared error (RMSE) [9], bayesian information criterion 

(BIC) [23], or area under the receiver operating characteristic curve (AUC) [8], is usually 

considered a better model. However, this perspective overlooks a critical aspect: models 

that prioritize prediction accuracy often fail to provide scientifically or practically 

meaningful interpretations and explanations. While accurate prediction could be useful, 

the focus on prediction accuracy alone can overshadow the importance of 

understanding the underlying mechanisms and generalizable explanations driving these 

predictions. My goal is to develop inherently interpretable or “meaningful” models that go 

beyond post-hoc explanations of black-box models toward designing models that are 

inherently interpretable by providing not just better predictions but also estimations of 

parameters that provide an explanation of those predictions. Particularly, the parameters 

of these meaningful models correspond to latent variables, providing insights into the 

educational processes they represent.  

Why are these inherently interpretable models important? Interpretations and 

explanations are crucial for scientific insight and are useful for practical applications, 

especially from the human-computer interaction perspective. Many existing models do 

provide either scientific insight or practical application. For example, Deep Knowledge 

Tracing (DKT) [17], a knowledge tracing model based on Recurrent Neural Network 

(RNN), has been demonstrated to predict student performance better than traditional 
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approaches based on logistic regression [1]; however, its parameters do not have an 

association with any latent constructs and there have been no scientific insights or 

practical applications resulting from it [21]. In contrast, Additive Factor Model (AFM) [3], 

a knowledge tracing model based on logistic regression, often underperforms DKT in 

prediction accuracy, but its parameter estimates have meaningful interpretations (e.g., 

the slope illustrates the rate of learning of knowledge components) that lead to new 

scientific insights (e.g. improved cognitive models discovery) and results in useful 

practical applications (e.g. an intelligent tutoring system redesign) [13]. 

It is likely a misconception that complex black-box models are always superior in 

terms of predictive performance. In many cases, simpler, interpretable models can 

achieve comparable accuracy [6, 16, 20, 26, 28], while still providing valuable insights 

into the learning mechanisms and pedagogy [11, 13]. For example, it has been shown 

that a logistic regression model, with the right set of features, was as good as DKT in 

predicting student performances on several datasets, while also preserving the 

meaningful interpretation of their parameter estimates [6, 14, 20]. Emphasizing the 

development and use of inherently interpretable models in EDM can lead to more 

effective and actionable educational interventions. More examples from my previous 

works are discussed further in Chapter 3. 

In this thesis, I propose generalized strategies for developing meaningful models 

based on insights from my prior works. Then, I will demonstrate the utility of the 

proposed strategy by applying them to develop a new knowledge tracing model that 

effectively captures the spacing effect while maintaining the interpretable parameter 

estimates. Furthermore, to demonstrate the superiority of meaningful models, compared 

to black-box models, in practical applications, I will develop a recommender system to 

suggest an optimal study schedule based on the newly developed model. To complete 

my thesis, I propose conducting in-vivo studies with middle school students in the 

biology domain to demonstrate the effectiveness of the system.  

 

This document is organized as follows:  

In Chapter 2, I detail the background and related work. The first section briefly 

overviews the literature on models’ explainability and interpretability, and the relevance 

of these arguments in the context of EDM. In the next section, I discuss the history and 

existing works on knowledge tracing models and models of human learning. In Chapter 

3, I briefly describe examples of my related previous work in building meaningful models 
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and illustrate connections between these previous works and this thesis. Lastly, Chapter 

4 describes the proposed work to complete my thesis. I discuss the proposed 

generalized strategies for developing meaningful models, and provide further detail on 

the new model, its application, and the proposed in-vivo study.  
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CHAPTER 2 
BACKGROUND 

 

 

2.1 Model Interpretability 

 

The widespread use of black-box machine learning models in high-stakes 

decision-making areas, such as healthcare and criminal justice, has led to significant 

challenges and ethical concerns [27]. Similarly the field of EDM has prioritized prediction 

accuracy such that black-box models have been increasingly used [5, 7]. However, 

black-box models not only present challenges for applications in high-stakes domains, 

but also fail, by themselves, to provide useful insights, scientifically or practically. 

While some believe that developing methods to explain these black-box models 

can mitigate these issues [10], this approach often perpetuates problematic practices. In 

response, Rudin et al. have proposed that the preferable strategy is to design models 

that are inherently interpretable by design [22]. This perspective underscores the 

fundamental difference between explaining black-box models and using inherently 

interpretable models, such that explanation is post hoc and does not lead to the 

understanding of the underlying mechanisms of the events or the nature of the data. 

Instead, meaningful models provide transparency and accountability, which are crucial in 

applications that directly impact stakeholders and could lead to useful insights. 

The problem is that it is almost always easier to find an accurate-but-complex 

model than an accurate-yet-simple model. However, Semenova et al. pointed out that, 

given a predictive model, there is usually a large equivalence set of similarly accurate 

models known as the Rashomon set. This set includes some models that are highly 

parameterized and difficult to understand, while others are simpler and more 

interpretable [24]. Therefore, given an accurate black-box model, an inherently 

interpretable model is likely to exist but unlikely to be produced by deep learning.  

Usually, a machine learning model would be considered interpretable when it is 

simple enough (e.g. smaller number of parameters) for humans to comprehend and 

understand the relationship between input features and output prediction. However, in 

the context of this thesis, I aim to expand on the definition of interpretable models to 

“meaningful models”, such that the input features themselves need to be meaningful and 

7 

https://www.zotero.org/google-docs/?N2E8bd
https://www.zotero.org/google-docs/?SmSO0t
https://www.zotero.org/google-docs/?p7fyaG
https://www.zotero.org/google-docs/?mjTmd4
https://www.zotero.org/google-docs/?GH6SJJ


 

represent some latent constructs. Moreover, the parameter estimates from meaningful 

models should provide insights that lead to the understanding of the underlying 

mechanisms or practical applications. For instance, consider a simple linear regression 

model predicting the probability of diabetes. If one of its features is a complex and 

arbitrary computation, such as weight multiplied by the number of siblings, the model 

may not be genuinely interpretable. Even though the model predicts an outcome, the 

inclusion of obscure or unrelated features can obscure its interpretability, making it 

challenging to understand how and why certain predictions are made. Chapter 3 

discusses examples of my previous work developing models that are interpretable by 

this expanded definition. 

 

2.2 Knowledge Tracing and Models of Learning 

 

The main objective of EDM is to improve educational systems by applying data mining 

techniques to educational data, such as student interactions with an ITS, to obtain useful 

insights, especially on the students' learning processes. These insights can then help 

refine teaching strategies and enhance student achievement. Knowledge tracing models 

are among the most popular models that have been explored in the field of EDM. These 

models take students’ past performance on related problems associated with a set of 

knowledge components [12], as inputs and output predicted student performance on a 

particular problem or a student’s mastery on a certain knowledge component.  

​ Traditionally, there are two popular approaches to knowledge tracing models. 

Early attempts based on a Bayesian inference approach, which usually relied on 

simplifying the model assumptions (e.g. student’s mastery is a binary state). Bayesian 

Knowledge Tracing (BKT) [4], which models student mastery as a latent variable in a 

simple Hidden Markov Model [2], has been widely used in the real-world ITSs and 

shown to be reasonably effective for mastery learning and problem selection [25]. 

Another popular approach to knowledge tracing models is a series of models based on 

logistic regression models, such as Additive Factor Model (AFM) and Performance 

Factor Analysis (PFA) [15]. In contrast to BKT, these models do not assume student 

mastery as a binary variable but use a parametric factor analysis approach to trace a 

student’s knowledge based on a variety of factors, such as number of previous 

opportunities. Recently, with the rising popularity of neural networks, a large number of 

knowledge tracing models based on different deep learning techniques has been 
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introduced. Deep Knowledge Tracing (DKT) is the pioneer of the deep learning based 

approach, which is based on a sequence model called Recurrent Neural Network 

(RNN). In the earlier works, DKT has been demonstrated to outperform the existing 

models, such as BKT and PFA, in many scenarios. However, recent work has further 

studied its pitfalls and showed that these deep learning models do not always 

outperform traditional models; model success depends on the nature of the dataset [6, 

20, 26, 28]. 

​ In the context of interpretability, traditional models based on Bayesian inference 

and logistic regression usually have parameters that have meaningful interpretations, 

intentionally or not, due to the simplicity of the models and variables that are based on 

related latent constructs, such as a probability that a student makes a mistake when 

applying a known skill or a probability that a student guesses an answer correctly. 

However, deep learning based knowledge tracing models often forgo interpretability for 

potentially stronger predictive power due to the extremely large amount of parameters 

that these models usually have. On a related note, the traditional evaluation methods for 

knowledge tracing models have focused on goodness-of-fit (e.g. AIC and BIC) and 

cross-validation. However, recent trends emphasize the use of metrics like AUC. This 

shift is driven by the increasing complexity and number of parameters in the deep 

learning based models, which have a strong negative impact on metrics like BIC. In my 

previous work, it is demonstrated that relying solely on AUC might not always accurately 

represent the quality of knowledge tracing models in the practical applications [6, 16, 20, 

26]. 

It could be argued that the primary goal of knowledge tracing is to predict student 

outcomes accurately. However, prior studies indicate that we can gain much more from 

parameter estimates, providing deeper insights into learning processes [11, 13]. If the 

objective of EDM is to enhance our understanding of learning, which leads to improved 

student outcomes, models that naively predict student’s performance without offering 

interpretability that can result in useful insights could be considered inadequate. Despite 

the utility of such predictions, their contribution to the broader educational objectives 

remains limited. 
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CHAPTER 3 
PRIOR WORK IN BUILDING MEANINGFUL MODELS 

 

 

3.1 Content Matters: A Computational Investigation into the Effectiveness 
of Retrieval Practice and Worked Examples 

 

This section was adapted from my published work [18]: 

Rachatasumrit, N., Carvalho, P., Koedinger, K. (2023), Content Matters: A 

Computational Investigation into the Effectiveness of Retrieval Practice and 

Worked Examples. AIED 2023, Proceedings The 24th International Conference 

on Artificial Intelligence in Education 

 

In this work we argue that artificial intelligence models of learning can contribute precise 

theory to explain surprising student learning phenomena. In some past studies of 

student learning, practice produces better learning than studying examples, whereas 

other studies show the opposite result. We reconcile and explain this apparent 

contradiction by suggesting that retrieval practice and example study involve different 

learning cognitive processes, memorization and induction, respectively, and that each 

process is optimal for learning different types of knowledge. We implement and test this 

theoretical explanation by extending an AI model of human cognition — the Apprentice 

Learner Architecture (AL) — to include both memory and induction processes and 

comparing the behavior of the simulated learners with and without a forgetting 

mechanism to the behavior of human participants in a laboratory study. We show that, 

compared to simulated learners without forgetting, the behavior of simulated learners 

with forgetting matches that of human participants better. Simulated learners with 

forgetting learn best using retrieval practice in situations that emphasize memorization 

(such as learning facts or simple associations), whereas studying examples improves 

learning in situations where there are multiple pieces of information available and 

induction and generalization are necessary (such as when learning skills or procedures). 

This work is an example of a computational model that mainly focuses on the 

underlying mechanisms, which make them inherently interpretable. It allows us to make 

changes (e.g. adding a memory mechanism) that enhance its capability to model new 
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phenomena while maintaining its interpretability. From the experiment, we also gained 

insight into how inductive learning and memory mechanisms interact differently with 

different types of content (e.g. fact vs skill). 

 

3.2  ​​Good Fit Bad Policy: Why Fit Statistics are a Biased Measure of 
Knowledge Tracer Quality 

 

This section was adapted from my published work [20]: 

 

Rachatasumrit, N., Weitecamp, D., Koedinger, K. (2024), ​​Good Fit Bad Policy: 

Why Fit Statistics are a Biased Measure of Knowledge Tracer Quality. AIED 

2024, Proceedings The 25th International Conference on Artificial Intelligence in 

Education. 

 

Knowledge tracers are typically evaluated on the basis of the goodness-of-fit of their 

underlying student performance models. However, for the purposes of supporting 

mastery learning the true measure of a good knowledge tracer is not its goodness-of-fit, 

but the degree to which it optimally selects next problem items. In this context, a 

knowledge tracer should minimize under-practice to ensure students master learning 

materials and minimize over-practice to reduce wasted time. Prior work has suggested 

that fit-statistic-based measures of knowledge tracer quality may misrank the relative 

quality of knowledge tracers’ item selection. In this work, we evaluate this claim by 

measuring over- and under-practice directly in synthetic data drawn from ground-truth 

learning curves. We conduct an experiment with 3 well-known student performance 

models: Performance Factor Analysis (PFA), BestLR, and Deep Knowledge Tracing 

(DKT), and find that in 43% of the synthetic datasets, the models with higher measures 

of overall predictive performance (e.g. AUC and MSE) were worse than a comparison 

model with a lower predictive performance at minimizing the number of predictions that 

would lead to over-practice and under-practice attempts. These results support the 

hypothesis that overall fit statistics are not a reliable measure of a knowledge tracer’s 

ability to optimally select next items for students, and bring into question the validity of 

traditional methods of knowledge tracer comparison. 
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​ In this work, we have demonstrated that black-box models like DKT do not 

always yield a better prediction performance compared to more interpretable models like 

PFA and BestLR, especially when we consider the metrics that are directly related to 

real-world applications like number of over-practices and under-practices. 

 

 

3.3 Toward Improving Student Model Estimates through Assistance Scores 
in Principle and in Practice 

 

This section was adapted from my published work [19]: 

 

Rachatasumrit, N., Koedinger, K.R. (2021), Toward Improving Student Model 

Estimates through Assistance Scores in Principle and in Practice. EDM 2021: 

Proceedings of the 14th International Conference on Educational Data Mining. 

 

Student modeling is useful in educational research and technology development due to 

a capability to estimate latent student attributes. Widely used approaches, such as the 

Additive Factors Model (AFM), have shown satisfactory results, but they can only handle 

binary outcomes, which may yield potential information loss. In this work, we propose a 

new partial credit modeling approach, PC-AFM, to support multi-valued outcomes. We 

focus particularly on the amount of assistance, that is, the number of error feedback and 

hint messages a student needs to get a problem step correct. Because errors and hint 

requests may not only derive from student ability, but also from non-cognitive factors 

(e.g., students may game the system), we first test PC-AFM on synthetic data where 

non-cognitive factors source of variation is not present. We confirm that PC-AFM is 

indeed better than AFM in recovering the true student and knowledge component (KC) 

parameters and even predicts student error rates better than a model fit to error rates. 

We then apply the approach to six real-world datasets and find that PC-AFM 

outperforms AFM in reliable estimation of KC parameters and produces better 

generalization to new students, which requires better KC estimates. However, consistent 

with the hypothesis that student assistance behavior is driven by motivational or 

meta-cognitive factors beyond their ability, we found that PC-AFM was not better in 

reliable estimation of student parameters nor in generalization across items, which 
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requires accurate student estimates. We propose cross-measure cross-validation as a 

general method for comparing alternative measurement models for the same desired 

latent outcome. 

​ This work is an example of how we identify an issue with the configuration of an 

existing model (binary outcomes in AFM), which causes it to not be interpretable in 

some scenarios and develop a new meaningful model (PC-AFM) that addresses the 

identified issue. When we applied PC-AFM with real-student datasets, we found that KC 

parameter estimates are more reliable than student parameter estimates, which led to 

the insight that the assistance score was heavily influenced by factors beyond their 

ability, such as motivations. This analysis was only possible because of the interpretable 

nature of the parameters of PC-AFM, which supports our argument that meaningful 

models are important in the field of EDM. 

 

3.4 Beyond Accuracy: Embracing Meaningful Parameters in Educational 
Data Mining 

 

This section was adapted from my published work: 

 

Rachatasumrit, N., Carvalho, P.F., Koedinger, K.R. (2024), Beyond Accuracy: 

Embracing Meaningful Parameters in Educational Data Mining. EDM 2024: 

Proceedings of the 17th International Conference on Educational Data Mining.  

 

What does it mean for a model to be a better model? One conceptualization, indeed a 

common one in Educational Data Mining, is that a better model is the one that fits the 

data better, that is, higher prediction accuracy. However, oftentimes, models that 

maximize prediction accuracy do not provide meaningful parameter estimates, making 

them less useful for building theory and practice. Here we argue that models that 

provide meaningful parameters are better models and, indeed, often also provide higher 

prediction accuracy. To illustrate our argument, we investigate the Performance Factor 

Analysis (PFA) model and the Additive Factors Model (AFM). PFA often has higher 

prediction accuracy than the AFM. However, PFA’s parameter estimates are ambiguous 

and confounded. We propose more interpretable models (AFMh and PFAh) designed to 

address the confounded parameters and use synthetic data to demonstrate PFA’s 
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parameter interpretability issues. The results from the experiment with 27 real-world 

datasets also support our claims and show that more meaningful models will also 

produce better predictions. 
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CHAPTER 4 
PROPOSED WORK 

 

 

In my research so far, I have shown that inherently interpretable or “meaningful” models 

based on cognitive models can be as capable as black-box models when it comes to 

predicting student learning outcomes. Meaningful models have an advantage in that 

they also lead to insights, both practical and scientific, that result in actual applications 

and use cases. For instance, while the Additive Factor Model (AFM) often falls short of 

DKT in prediction accuracy, its parameter estimates offer valuable interpretations (such 

as the slope representing the learning rate of knowledge components). These insights 

can drive new scientific discoveries (like enhanced cognitive models) and lead to 

practical applications (such as redesigning intelligent tutoring systems). In prior work, we 

have explored meaningful models that capture the non-binary nature of students’ 

learning outcomes, the impact of content types on learning, and student-KC interactions, 

and demonstrated the insights that we acquired from those models. Based on this work, 

I propose generalized strategies for developing meaningful models: 

 

S1: When you identify a confounded latent variable in the predictive model, 

formulate a new observable or computed variable/measure? and a new 

associated latent variable to help remove the confound. 

 

S2: When a complex less meaningful model predicts better than a simpler more 

meaningful model, try to find out under what circumstances it is better. Use those 

circumstances to hypothesize and test new observed, computed, and/or latent 

variables. 

 

S3: When you discover that a complex model (e.g., a deep learning model or 

LLM) is identifying an indicator variable that is masking a correlated causal 

variable, create a model that prefers the causal variable. 

 

As an example, my prior work on PFAh illustrates the application of these strategies. In 

that work, I demonstrated that PFA (a complex model) predicts better than AFM (a 
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simpler model) particularly when there are differences in learning rate between 

successful and failed attempts or strong student-KC interactions (S2). In the work, the 

success and failure slopes in PFA are also shown to be confounded by differences in 

learning rate and student-KC interactions (S1). The new computed variable based on 

the ratio of the history of success attempts was then proposed to help remove the 

confound, which led to the new model that was more interpretable. 

 

In the proposed work, I will develop a new meaningful model in a new domain utilizing 

these strategies. In particular, the learning principle and data that I will focus on relate to 

the spacing effect. Spacing is one of the most important attributes that could affect 

learning, and its impact has been studied to a great extent; however, there is no existing 

quantitative model that focuses on the parameters interpretability. Additionally, unlike 

previous work where I have only discussed potential use cases of the acquired insights 

from the models, I will close the loop by developing an application based on the new 

model and conduct an experimental comparison that tests whether an application built 

based on an meaningful model is more effective than one based on a black-box model. 

In this proposed work, I will 

 

1.​ Develop a knowledge tracing model that captures spacing effects while 

preserving meaningful interpretation of their parameter estimates.  

2.​ Build a system based on the knowledge tracing model that can suggest optimal 

study schedule and evaluate it with real students. 

3.​ Conduct an in vivo study with Podsie to evaluate the system from (2) and 

compare the system against systems that are based on black-box models. (See 

details in Evaluation) 

 

 

4.1 Data 

 

During the model development, I will use a combination of real-student data and 

simulated data. The real student data will consist of existing data from DataShop and 

newly collected data with Podsie, a personalized learning tool, from middle school STEM 

students (Biology, Physics, Math, and Chemistry classes). The simulated data will be 

generated, based on a combination of ACT-R memory model, which can be used to 
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calculate the retrieval probabilities of information based on its activation levels, and 

some existing knowledge tracing models, varying among different content types, 

spacing, KC’s difficulty, and students’ ability. Afterwards, we will deploy the knowledge 

tracing model in the in-vivo study by integrating it in Podsie to suggest the optimized 

study schedule to students and evaluate the student's learning outcome improvement 

from following the suggested schedule via Podsie.​

 

 

4.2 Developing a meaningful model of Spacing 

 

The main challenge for this new model is to successfully employ the strategies to 

identify and add new, maybe computed, variables that are capable of capturing spacing 

effects and include them in the linear models. This knowledge tracer would add a model 

forgetting and spacing effect to the existing learning growth component in the logistic 

regression AFM family of models (AFM, iAFM, or PFAh). Examples of potential variables 

are a geometric mean of the spaces between prior attempts or a variable based on the 

average distance between optimal and actual spacing, where we computed optimal 

spacing from the number of prior opportunities and duration from last opportunity to 

predicted one. These variables will allow us to capture a sequence of spaces in a single 

variable, but the downside is that it ignores the order of the prior attempts which is an 

important part of the spacing effect when an expanding strategy is used. During the 

development, I will come up with a list of potential variables and experiment with both 

simulated data and real-student data to evaluate the pros and cons for each of them 

[26]. 

 

 

4.3 Demonstrate an Application that uses the Meaningful Model works 
better than one using a Complex Black-box model 

 

To demonstrate that meaningful models are more effective in practical applications, I will 

leverage the newly developed knowledge tracing model to build a recommender system 

that suggests an optimal practice schedule for a student-KC pair given a desired 

retention interval, the time of the first and last practice, and the number of repetitions. I 
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will investigate two potential solutions for the proposed system. Firstly, I will attempt to 

derive a closed-form solution from the parameters learning from fitting the data in the 

model. This approach will only be possible with inherently interpretable models that 

allow us to attain meaningful parameters, in contrast to black-box models where there is 

no meaningful parameter to utilize. Another solution is to develop a policy for optimal 

practice schedule using reinforcement learning approaches and leverage the knowledge 

tracing model in a reward or Q-value function. 

 

 

4.4 Timeline of Completion 

 

My goal is to complete the dissertation by May 2025. This gives me enough time to 

develop the new knowledge tracing models and the optimal schedule recommender, and 

conduct the in-vivo studies with Podsie in the Spring 2025. My proposed schedule is 

shown below: 

 

●​ July 22, 2024: Thesis proposal 

●​ August 2024 - October 2024: Model and application development 

●​ Late Fall 2024 / Early Spring 2025: In-vivo study with Podsie 

●​ April 2025 - May 2025: Thesis writing & Defense 
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