ArrayLists and Wrapper Classes

Arjun Chandrasekhar

Getting started

In this worksheet you will complete some practice problems related to your reading on
ArrayLists and Wrapper classes. Here is how you should complete the worksheet:

Create a file in your text editor (either Notepad++ or BBedit). Put the following starter code into
it:

import java.util.Arraylist;

public class ArraylLists

{
public static void main(String[] args)
{
}

}

You must include the import statement at the top! Save your file as ArrayLists. java.

Open up the command line application (either Terminal or Command Prompt). Navigate to the
location where you saved the file. Compile and run the file. You're now ready to comple the
worksheet!

Re-sizing an array

An array is generally appropriate when the number of array elements is fixed in size. However, if
we want to re-size an array, we essentially have to declare a new array with a new size.

Write code that creates an int[] called nums with the contents {4, 6, 8}. Then add the
value 10 to the end of the array as follows:
1. Create a new int[] called temp whose size is one bigger than the size of nums.
2. Copy the contents from nums into temp.
3. Insert the value 10 at the last place of temp.
4. Reassign nums to be equal to temp.

Print out the contents of nums to confirm that your code worked.
Recall: that in order to print out the contents you need to do the following:

1. Add the line import java.util.Arrays; to the top of your file.
2. Use the command System.out.println(Arrays.toString(nums)); to print out nums.

ArrayLists

As you can see, adding new values to an array is quite tedious. Fortunately, if we want to store
several values in one place (and keep track of their order), Java has a built-in class for that
exact purpose. Java’s ArrayList class implements a “dynamic” array that can grow in size as

needed.

To create an ArrayList of items of the same type, we use the following syntax:

ArrayList<TYPE> items

new ArrayList<TYPE>();

However you replace TYPE with the actual data type that you want to use. For example, to
create an ArraylList of Strings containing the names of characters from a movie, you could

use:

ArraylList<String> characters = new ArraylList<String>();

ArrayLists can hold objects of any type, as long as all the objects share the same type. First
we’ll focus on Strings, but later we’'ll see how to create ArrayLists containing the other
primitive data types that we have learned about.

Here is a table of ArrayList methods:

ArrayList (specifically the
number of elements)

Method Description Example

add(...) Inserts a new element atthe | characters.add("Rick");
end of the ArrayList

get(i) Retrieves the element at the | characters.get(4) -
i-th position (0-based retrieves the value stored at
indexing) position 4 (i.e. the 5th

element)
size() Retrieves the size of the characters.size()

ArrayList practice

Do the following:
1. Create an ArraylList of Strings called aList.
2. Create three String variables called stri, str2, and str3 with the values "ET",
"Phone", and "Home".
3. Add the following Strings to the ArrayList: "ET", "Phone", "Home".
4. Print out the contents of aList using System.out.println(aList);
a. What does this print out?
b. Is this different from what happens when you do this with an array?

Fill in the following table for what the value of each expression is. First write down your
prediction, then run code to check if your prediction was right.

Expression Prediction Actual Output

aList.get(-1)

alList.get(9)

aList.get(1)

aList.get(2)

alList.get(3)

aList.add('!")

alList.size()

alList.length

aList.length()

Draw a picture of what data is on the stack and on the heap. Recall that for every
non-primitive data value, the variable is on the stack; the variable contains a memory
address which points to the actual data values on the heap.

Looping through an ArraylList

Examine the following code:

ArraylList<String> alist = new ArraylList<String>();

aList.add("Troy");

aList.add("and");

aList.add("Abed");

for(int i = @0; i < alList.size(); i++)

{
String str = alist.get(i);
System.out.println(str);

Trace through the code step by step.

e Write down every single line number (and the relevant instruction) that gets

executed, in the order that they get executed.

e Whenever a variable gets initialized or updated, state the resulting value of the

variable.

e Trace the code to completion. Do not simply state that a certain sequence will be

repeated - actually write out the repetition.

Even if you understand this code clearly, trace through it fully. There is more room on the

next page if necessary.

For-each loops

We often want to go through the items of a collection one at a time. For example, we can write
the following loop:

int[] nums = {1, 2, 3, 4, 5};
for(int i = @; i < nums.length; i++)
{

int curr = nums[i];

// do stuff to curr

However, having to manage the loop variable i can be very tedious. An alternative approach is

to use an enhanced for loop, sometimes called a for-each loop. Here is an alternative way to
write that same loop:

int[] nums = {1, 2, 3, 4, 5};
for(int curr : nums)

{
// do stuff to curr

The variable curr is underlined, to emphasize what parts of the normal for loop get translated
to the enhanced for loop.

Re-write each of the following pieces of code using an enhanced for loop.

ArrayList<String> alList = new ArraylList<String>();
// add stuff to alist
for(int i = 0; i < alist.size(); i++) {

String curr = alist.get(i);

// do stuff to curr

String[] words = {"Troy", "and", "Abed"};
for(int i = @; i < words.length; i++)
{

String nextWord = words[i];

// do stuff to nextWord

Wrapper classes and auto-boxing/unboxing

Java will not allow you to add primitive data to an ArrayList. This is because Java uses a
design principle called generics, and this design choice requires ArrayLists (and every other
Collection) to only be composed of objects. Objects have certain inheritance properties that
primitive data does not, and inheritance is the foundation of generics. All of this will be covered
in CS2 - for the time being, just remember that you cannot declare an ArrayList of primitive
data types.

What you can do is declare an ArrayList of wrapper classes. Each primitive data type has a
corresponding wrapper class that allows you to treat primitive data as if it were non-primitive.
Here are all of the wrapper classes for each primitive data type.

Primitive data type Corresponding wrapper class
byte, short, int, long Byte, Short, Integer, Long
float, double Float, Double

boolean Boolean

char Character

ArrayList<int> nums = new ArraylList<int>();

ArrayList<Integer> nums = new ArraylList<Integer>();

Auto-boxing/unboxing

Because nums takes Integer objects, you may think we need to create Integer objects to add
into the ArrayList. We could add and retrieve values as follows:

// Create an Integer object before we add it to the ArraylList
Integer num = new Integer(42);
nums.add(num);

// Retrieve a value and store it as an Integer object
Integer myNum = nums.get(Q);

Of course, this is a bit tedious to have to make everything into an Integer. For example, the
following code is pretty tedious.

int num = 42;

Integer num2 = new Integer(num); // convert it from int to Integer to add
to Arraylist

nums.add(num2);

Fortunately, Java has a design feature called auto-boxing and auto-unboxing. Java will
automatically convert between primitive data and wrapper classes as needed so that you don’t
have to think about it.

nums.add(42); // Java automatically "waps" the int 42 to an Integer
int val = nums.get(®); // Java automatically "unwraps" from Integer to an
int

Examine the following code

ArrayList<Integer> alList = new ArraylList<Integer>();
aList.add(5);

double x = alList.get(0);

System.out.println(x);

e Predict the output of the code. Then run the code to confirm if your prediction was
correct.
Draw a picture of the stack and heap contents at the end of the code.
State any places where Java does any sort of automatic converting between data
types.

Examine the following code

ArrayList<Integer> alList = new ArraylList<Integer>();
aList.add(5);

short x = alist.get(0);

System.out.println(x);

Predict the output of the code. Then run the code to confirm if your prediction was
correct.

Duplicate objects

But first, a riddle!

What color is my house?

My wife and | have the same address on our respective drivers licenses

1. 1 go to the address listed on my driver’s licence and paint the house at that
address purple

2. My wife goes to the address listed on her driver’s license and paints the house
house at that address orange

What color is my house?

Recall that when we create a non-primitive variable, the variable holds the object's memory
address. The memory address points to data on the heap - but the variable’s value is just a
memory address.

With that in mind...

What will the following code output?

ArraylList<String> arrl = new ArraylList<String>();
ArraylList<String> arr2 = arrl;

arrl.add("ABC");

arr2.add("ABC");

System.out.println(arrl.size());

Answer the question, then run the code to check if your answer was correct.
Draw a picture of what is on the stack and the heap. You may want to use arrows
to show which memory address on the stack point to which data values on the
heap.

	ArrayLists and Wrapper Classes
	Getting started
	Re-sizing an array
	ArrayLists
	ArrayList practice
	Looping through an ArrayList
	For-each loops
	Wrapper classes and auto-boxing/unboxing
	Auto-boxing/unboxing
	Duplicate objects

