
Node-RED, ServIoTicy and InTeGreen

Matthias Dieter Wallnöfer, TIS innovation park, Bolzano/Bozen - Italy

Overview
Installation
ServIoTicy (Glue-Things, Compose)
Plugins (Nodes)

ServIoTicy
InTeGreen

Deployment/duplication of pre-existing flows

Overview

●​ http://nodered.org/
●​ Article: http://www.techrepublic.com/article/node-red/
●​ Video: https://www.youtube.com/watch?v=f5o4tIz2Zzc
●​ based on Node.js
●​ is kind of an orchestrator
●​ the plugins/components are called “nodes”
●​ based on sources (inject/input node) and sinks (output node)
●​ allows the exchange and adaption (function nodes) of data between different

protocols/software
●​ the diagrams are called data flows and are stored as JSON

Installation

●​ Install/upgrade Node.js
○​ on Ubuntu 12.04 Precise: the manual update from rel. 0.6 to rel. 0.10 was

necessary
○​ on Fedora 19 the shipped version was okay
○​ on Raspbian (Raspberry Pi) perform these 2 commands in order to install a

recent Node.js:​
wget http://node-arm.herokuapp.com/node_latest_armhf.deb​
sudo dpkg -i node_latest_armhf.deb

●​ Guide: http://nodered.org/docs/getting-started/installation.html
●​ A note for Raspberry Pi and other remote SSH installations: use wget to download

archives since this saves you from downloading it locally and copying with scp. Example:​
wget https://github.com/node-red/node-red/archive/0.8.1.zip

●​ Download link here: http://nodered.org/, which provides you with a ZIP archive​
Also the GIT checkout is possible, but the directory name changes (node-red)

●​ Extract the Node-RED ZIP archive and perform the installation:​
unzip node-red-0.8.1.zip​

http://nodered.org/
http://www.techrepublic.com/article/node-red/
https://www.youtube.com/watch?v=f5o4tIz2Zzc
http://node-arm.herokuapp.com/node_latest_armhf.deb
http://nodered.org/docs/getting-started/installation.html
http://nodered.org/docs/getting-started/installation.html
http://nodered.org/docs/getting-started/installation.html
https://github.com/node-red/node-red/archive/0.8.1.zip
http://nodered.org/

cd node-red-0.8.1​
npm install --production

●​ Download additional nodes, since the basic version contains only few ones:
○​ In the Node-RED directory:​

cd nodes
○​ 3 interesting Node-RED node repos exist:

■​ Matthias Wallnöfer’s repo
(https://github.com/mwallnoefer/node-red-nodes/tree/integreen) with both
InTeGreen and ServIoTicy support

■​ Charalampos Doukas’ repo (https://github.com/hdoukas/node-red-nodes)
with ServIoTicy support

■​ Official default repo (https://github.com/node-red/node-red-nodes)
○​ Please clone Matthias’ nodes repo to have both InTeGreen and ServIoTicy

support. Otherwise you may download it as a ZIP archive:​
wget https://github.com/mwallnoefer/node-red-nodes/archive/integreen.zip​
unzip integreen.zip

○​ For Charalampos’ repo the download commands would be:​
wget https://github.com/hdoukas/node-red-nodes/archive/master.zip ​
unzip master.zip

○​ For the official default repo the download commands would be:​
wget https://github.com/node-red/node-red-nodes/archive/master.zip ​
unzip master.zip

●​ When you plan to use database systems like MySQL, MongoDB or access hardware like
Arduino over the serial port, you may need additional Node.js modules.

○​ Run Node-RED in verbose mode to find all missing Node.js modules​
node red.js -v

○​ Stop it by pressing Ctrl+C and install the desired modules by npm, eg. for
accessing the serial port on Arduino:​
cd ~​
npm install serialport

○​ A more concrete example when you intend to use MySQL, MongoDB, SQLite3,
the serial port, Arduino, Wake-on-LAN and Philips Hue bulbs could be:​
cd ~​
npm install mysql mongodb sqlite3 serialport arduino-firmata wake_on_lan
node-hue-api

●​ Run it (stopping is done with Ctrl+C):​
node red.js​
on Raspberry Pi set also the memory limitation:​
node --max-old-space-size=128 red.js

●​ Now Node-RED should be available in the web-browser at http://localhost:1880
●​ The software is client-server-based, so it is no problem having it running on remote

machines. Be aware that Node-RED could crash under certain conditions, so make sure
that you are able to restart it then.

https://github.com/mwallnoefer/node-red-nodes/tree/integreen
https://github.com/hdoukas/node-red-nodes
https://github.com/node-red/node-red-nodes
https://github.com/mwallnoefer/node-red-nodes/archive/integreen.zip
https://github.com/hdoukas/node-red-nodes/archive/master.zip
https://github.com/node-red/node-red-nodes/archive/master.zip
http://localhost:1880

ServIoTicy (Glue-Things, Compose)

●​ ServIoTicy (or Compose) is a very powerful Internet of Things (IoT) platform. It can be
used as things’ data storage but also for data elaboration. Please find more information
on http://www.servioticy.com/, http://www.gluethings.com and
http://www.compose-project.eu/.

●​ When you plan to use it you need a valid account first
●​ Please look at http://iotogether.compose-project.eu/?page_id=122 for a how-to for using

Glue-Things (= public ServIoTicy-Compose cloud) and Spark, if you plan to use it.
●​ Register on http://www.gluethings.com/platform/smart-object-manager/
●​ When you have logged in, create a first service object (SO) with “Sensor Type” “Custom

template”. This one is intended testwise and may be called “Test”.
●​ On the following screen you will notice the API token, which is basically your password
●​ The access URLs are then as follows: http://api.servioticy.com/…, eg. for getting SOs

streams:
http://api.servioticy.com/1410877270391637269ea1ddf4cc4879ae0cf783a6296/streams/

●​ You will need this information when accessing ServIoTicy with both Node-RED or curl on
the command line

Plugins (Nodes)

○​ The Node-RED ServIoTicy node has not yet been incorporated in Node-RED’s official
nodes repository.​
There was already a freely available node (plugin) for COMPOSE in Node-RED.
Originally written by Charalampos Doukas, the author improved its stability and
versatility. In the beginning it could only access the public COMPOSE/ServIoTicy cloud
and all the parameters needed to be set at configuration time. The author changed this
to permit accesses also to other (private) ServIoTicy instances and enabled the
parameter setting on run-time over message parameters.​
Alternatively users could also access the ServIoTicy API directly by using the HTTP
node, which is more complicated.​
​
Please look at the API description here: http://docs.servioticy.com/

○​ ServIoTicy actuations can be tracked by MQTT nodes, as seen on:
http://www.servioticy.com/?page_id=273. The node needs to be configured with host
localhost:1883, username, password and topic <SOId>/actions. Afterwards a JSON
node needs to be connected on output to handle the correct parsing.

○​ Matthias Wallnöfer developed nodes for InTeGreen (repo:
https://github.com/mwallnoefer/node-red-nodes/commits/integreen). InTeGreen is the
real-time ITS information system of Bolzano/Bozen and is very useful to track traffic
and/or ambience situations (delays, parking slots, air pollution ecc…). Usage information
here: http://www.integreen-life.bz.it/. One node (InTeGreen In) is thought to extract
general-purpose information, the second one (InTeGreen ServIoTicy) should be used

http://www.servioticy.com/
http://www.gluethings.com
http://www.compose-project.eu/
http://iotogether.compose-project.eu/?page_id=122
http://www.gluethings.com/platform/smart-object-manager/
http://api.servioticy.com/
http://api.servioticy.com/1410877270391637269ea1ddf4cc4879ae0cf783a6296/streams/
http://docs.servioticy.com/
http://www.servioticy.com/?page_id=273
http://www.servioticy.com/?page_id=273
https://github.com/mwallnoefer/node-red-nodes/commits/integreen
http://www.integreen-life.bz.it/

with the ServIoTicy Out node for replication purposes.​
A service catalog about the offered APIs can be found here:
http://ipchannels.integreen-life.bz.it/doc/. Meteorological data for instance is
http://ipchannels.integreen-life.bz.it/MeteoFrontEnd/, parking slots can be found under
http://ipchannels.integreen-life.bz.it/parkingFrontEnd/. Please contact the InTeGreen
team for more information.​
Also here you may access the API without any special node (plain HTTP node), but it will
become more complicated.

Now the technical details:

ServIoTicy

●​ input node (data read), returns the latest update
○​ attributes host, port, soid (service object ID), stream, channel, auth token (=

password)
○​ soid, stream, channel are dynamically assignable (by msg.* attributes on input

msg)
○​ output is JSON-formatted, for instance:​

msg.payload = 27.4​
msg.lastUpdate = 1409574000

○​ lastUpdate specified in UNIX timestamp format in [s]
●​ output node (data write)

○​ attributes host, port, soid (service object ID), stream, channel, auth token (=
password)

○​ soid, stream, channel are dynamically assignable (by msg.* attributes on input
msg)

○​ lastUpdate can be provided as part of the input msg, otherwise “now” will be
assumed (UNIX timestamp format in [s])

○​ output is JSON-formatted and the confirmation of the correct data acquisition:​
msg.payload =
{“channels”:{“<channel>”:{"current-value":"<value>”}},"lastUpdate":<lastUpdate>}

●​ a UNIX timestamp to plain date output converter for debugging purposes has been
developed. Please append “| ./convTimeServ.js” onto the curl command. Example:​
curl -i -H "Authorization:
M2JhMmRkMDEtZTAwZi00ODM5LThmYTktOGU4NjNjYmJmMjc5N2UzNzYwNWItNTc2
ZS00MGVlLTgyNTMtNTgzMmJhZjA0ZmIy" http://localhost:8080/<SO
id>/streams/temp1/lastUpdate | ./convTimeServ.js

InTeGreen

●​ InTeGreen input node (120-integreen)
○​ attributes host, port, frontend, call and call parameters
○​ frontend, call and call parameters are dynamically assignable (by msg.* attributes

on input msg)

http://ipchannels.integreen-life.bz.it/doc/
http://ipchannels.integreen-life.bz.it/MeteoFrontEnd/
http://ipchannels.integreen-life.bz.it/parkingFrontEnd/
http://localhost:8080/

■​ call parameters can be specified in both URI format
(param1=value1¶m2=value2…) or as JS map ({ param1: value1,
param2: value2… })

○​ output is JSON-formatted, for get-records for instance:​
msg.payload =
[{"timestamp":1409574000000,"value":27.4},{"timestamp":1409574600000,"value
":27.6},...]​
msg.req =
/MeteoFrontEnd/rest/get-records?station=83200MS&name=LF&seconds=10000

●​ InTeGreen ServIoTicy input node which can directly feed the ServIoTicy output node
(121-integreen-servioticy)

○​ attributes host, port, frontend, station, datatype, seconds
○​ frontend, station, datatype and seconds are dynamically assignable (by msg.*

attributes on input msg)
■​ seconds may be typed as number or string, but needs to be a valid

positive integer
○​ output is JSON-formatted and already in ServIoTicy format, for instance:​

msg.payload = 27.4​
msg.lastUpdate = 1409574000

○​ lastUpdate specified in UNIX timestamp format in [s]
○​ it is suggested to use the InTeGreen-ServIoTicy service object generator

SOgenerator.js to create a fitting schema for the chosen frontend. The tool has
been written by me using Node.js and is released under the Apache 2 license
compatible to Node-RED. Usage:

■​ ./SOgenerator.js - asks for the InTeGreen frontend (eg. MeteoFrontEnd)
and writes output on console

■​ ./SOgenerator.js <frontend> - writes output on console
■​ ./SOgenerator.js <frontend> <output> - writes output to output file

●​ a UNIX timestamp to plain date output converter for debugging purposes has been
developed. Please append “| ./convTimeInte.js” onto the curl command. Example:​
curl -i
"http://ipchannels.integreen-life.bz.it/MeteoFrontEnd/rest/get-records?station=83200MS&
name=LF&seconds=10000" | ./convTimeInte.js

Deployment/duplication of pre-existing flows

●​ File system: a copy of the respective flow file into the target Node-RED directory is
possible. The file needs to be called flows_<target hostname>.json, else a configuration
change is necessary. Node-RED can already be running, in which case it needs to be
restarted.

●​ HTTP: It is possible to share JSON flow files (usually located under <node red
dir>/flows_<hostname>.json) to other installations in order to simplify deployments. This
can be done using a simple POST request to the active target Node-RED instance. Eg.:​

curl -X POST -i -H "Content-type: application/json" -d @/tmp/flows_xps732.json
http://localhost:1880/flows

http://localhost:1880/flows

	Node-RED, ServIoTicy and InTeGreen
	Overview
	Installation
	ServIoTicy (Glue-Things, Compose)
	Plugins (Nodes)
	ServIoTicy
	InTeGreen

	Deployment/duplication of pre-existing flows

