

UNIT-1​
Lexical Analysis

The Role of Lexical Analyzer

In the first phase of a compiler, the Lexical Analysis reads the input characters

of the source program and produces a sequence of tokens as output. These

tokens are sent to the parser for syntax analysis. Whenever the lexical analyzer

finds an identifier, it needs to enter that into the symbol table. It will also use the

symbol table for knowing the kind of identifier, which helps in determining the

proper token. These interactions are shown in Fig. 1. In this, the parser calls the

lexical analyzer by getNextToken command, then the lexical analyzer reads the

characters from its input until it identifies the next token. This token is returned

to the parser.

Figure 1: Interactions between the lexical analyzer and the parser

The Lexical analyzer will also perform other tasks like stripping out comments

and whitespace, correlating the error messages generated by the compiler with

the source program. Sometimes, lexical analyzers are divided into a cascade of

two processes:

a)​ Scanning consists of simple processes, such as deletion of comments

and reducing consecutive whitespace characters into one.

b)​ Lexical analysis, which produces tokens from the output of the scanner.

Lexical Analysis Versus Parsing

The analysis portion of the compiler is separated into lexical and syntax

analysis due to a number of reasons.

1

1.​ The simplicity of design. If we are designing a new language, separating

lexical and syntactic analysis can lead to a clean language design.

2.​ Compiler efficiency is improved. A separate lexical analyzer allows us to

apply specialized techniques. In addition, specialized buffering

techniques for reading input characters can speed up the compiler

significantly.

3.​ Compiler portability is enhanced.

Tokens, Patterns, and Lexemes

A token is a pair consisting of a token name and an optional attribute value.

The token name is an abstract symbol representing a kind of lexical unit.

A pattern describes a form that the lexemes of a token may take. In the case of

a keyword as a token, the pattern is just the sequence of characters that form

the keyword.

A lexeme is a sequence of characters in the source program that matches the

pattern for a token and is identified by the lexical analyzer as an instance of

that token.

Attributes for Tokens

When more than one lexeme matches a pattern, the lexical analyzer must

provide additional information about the particular lexeme for the subsequent

phases of a compiler. For example, the pattern for the token number matches

both 0 and 1, but it is important for the code generator to know which lexeme

was found in the source program. Thus, in many cases, the lexical analyzer

returns both the token name and attribute value to the parser. The token name

can be used for parsing decisions, while the attribute value can be used for the

translation of tokens after the parse.

Lexical Errors

Without the help of other components, it is hard for a lexical analyzer to tell,

that there is a source-code error. For instance, if the string fi is encountered for

the first time in a C program in the context:

2

fi (a = = f(x))

A lexical analyzer cannot tell whether fi is a misspelling of the keyword if or an

undeclared identifier for a function. Since fi is a valid lexeme for the token id,

the lexical analyzer must return the token id to the parser.

However, in some situations, the lexical analyzer is unable to proceed because

the prefix of the remaining input will not match with any of the patterns for

tokens. The simplest recovery strategy is "panic mode" recovery. We delete

successive characters from the remaining input until we find a token. Other

possible error-recovery actions are:

1.​ Delete one character from the remaining input.

2.​ Insert a missing character into the remaining input.

3.​ Replace a character with another character.

4.​ Transpose two adjacent characters.

Input Buffering

A two-buffer scheme is used to handle large lookaheads safely. We also use

"sentinels" that will save time for checking the ends of buffers.

Buffer Pairs

Specialized buffering techniques will reduce the time required to process a

single input character. In this scheme, we use two buffers that are alternately

reloaded, as shown in Fig. 2.

Figure 2: Using a pair of input buffers

Each buffer is of the same size N, and N is usually the size of a disk block. One

read command can load N characters into a buffer. If fewer than N characters

remain in the input file, then a special character called eof, marks the end of the

source file.

3

Two pointers to the input are maintained:

1.​ Pointer lexemeBegin, marks the beginning of the current lexeme

2.​ Pointer forward scans ahead until a pattern match is found

Once the next lexeme is determined, forward is set to the right end of the

character. Then we transform the lexeme to a token, and it is returned to the

parser. The lexemeBegin is set to the character immediately after the lexeme

just found. In Fig. 2, we see forward has passed the end of the next lexeme, **

(exponentiation operator), and must be retracted one position to its left.

Advancing the forward is required to first test whether we have reached the

end of one of the buffers. If we have reached the end of the buffer, we reload

the input to the other buffer and move forward to the beginning of the newly

loaded buffer. We will not overwrite the lexeme in its buffer until we determine

it.

Sentinels

In this scheme, for each character read we make two tests: one for the end of

the buffer, and one to determine what is the character. We can combine both

the tests by placing a sentinel character at the end of each buffer. The sentinel

is a special character that cannot be part of the source program that is eof.

Figure 3 : Sentinels at the end of each buffer

Figure 3 shows the Sentinels at the end of each buffer. The eof is also used as

a marker for the end of the entire input. Any eof that appears other than at the

end of a buffer means that the input is at an end. The algorithm for advancing

forward is given in Fig. 4.

4

Figure 4: Lookahead code with sentinels

Specification of Tokens

The important notation for specifying patterns of a lexeme are regular

expressions. While they cannot express all patterns, but they are very effective

in specifying those types of patterns.

Strings and Languages

An alphabet is any finite set of symbols. Typical examples of symbols are

letters, digits, and punctuation. The set {0, 1} is the binary alphabet.

A string over an alphabet is a finite sequence of symbols drawn from that

alphabet. The length of a string s is written as |s|. The empty string, denoted ϵ,

is the string of length zero.

A language is any countable set of strings over some fixed alphabet. Abstract

languages like ∅, the empty set, or {ϵ}, the set containing only the empty string,

are languages under this definition.

If x and y are strings, then the concatenation of x and y, denoted xy, is the

string formed by appending y to x. If we think of concatenation as a product,

we can define the "exponentiation" of strings as follows. Define s0 to be ϵ, and

for all i > 0, define si to be si-1s. Since ϵs = s, it follows that s1 = s. Then s2 = ss, s3

= sss, and so on.

5

Operations on Languages

In lexical analysis, the most important operations on languages are union,

concatenation, and closure, which are defined formally in Fig. 5

Figure 5: Definitions of operations on languages

Regular Expressions

Identifiers are described by using sets of letters and digits and using the

language operator’s union, concatenation, and closure. This process is useful

for regular expressions to describe all the languages that can be built from

these operators. In this notation, if letter_ is established to stand for any letter

or the underscore, and digit is established to stand for any digit. We could

describe the identifiers in C language by: letter_ (letter_ | digit) *

The regular expressions are built recursively out of smaller regular expressions,

using the rules described below. Each regular expression r denotes a language

L(r). Here are the rules that define the regular expressions over some alphabet

∑ and the languages that those expressions denote.

BASIS: There are two rules that form the basis:

1.​ ϵ is a regular expression, and L(ϵ) is {ϵ}, that is, the language is the empty

string.

2.​ If a is a symbol in ∑, then a is a regular expression, and L(a) = {a}, that is,

the language with one string a.

INDUCTION: There are four parts to the induction whereby larger regular

expressions are built from smaller ones. Suppose r and s are regular

expressions denoting languages L(r) and L(s), respectively

1.​ (r) | (s) is a regular expression denoting the language L(r) U L(s).

2.​ (r)(s) is a regular expression denoting the language L(r)L(s).

6

3.​ (r)* is a regular expression denoting (L (r)) *.

4.​ (r) is a regular expression denoting L(r). This last rule says that we can

add additional pairs of parentheses around expressions without

changing the language they denote.

As defined, regular expressions often contain unnecessary pairs of

parentheses. We may drop certain pairs of parentheses if we adopt the

conventions that:

a)​ The unary operator * has the highest precedence and is left associative.

b)​ Concatenation has second highest precedence and is left associative.

c)​ | has the lowest precedence and is left associative.

Under these conventions, for example, we may replace the regular expression

(a) | ((b)*(c)) by a | b*c. Both expressions denote the set of strings.

A language that can be defined by a regular expression is called a regular set.

If two regular expressions r and s denote the same regular set, we say they are

equivalent and write r = s. For instance, (a | b) = (b | a).

Regular Definitions

For notational convenience, we may wish to give names to certain regular

expressions and use those names in subsequent expressions, as if the names

were themselves symbols. If ∑ is an alphabet of basic symbols, then a regular

definition is a sequence of definitions of the form:

d1 → r1

d2 → r2

…

dn → rn

where:

1.​ Each di is a new symbol, not in ∑ and distinct from other d's, and

2.​ Each ri is a regular expression over the alphabet ∑ U {d1, d2, . . ., di-1}.

In C identifiers are strings of letters, digits, and underscores. Here is a regular

definition for the language of C identifiers.

letter_ → A | B | · · · | Z | a | b | · · · | z | _

7

digit → 0 | 1 | · · · | 9

id → letter_ (letter_ | digit) *

Extensions of Regular Expressions

Many extensions have been added to regular expressions to enhance their

ability to specify string patterns. Here we mention a few notational extensions.

1.​ One or more instances. The unary, postfix operator + represents the

positive closure of a regular expression and its language.

2.​ Zero or one instance. The unary postfix operator ? means "zero or one

occurrence." That is, r? is equivalent to r | ϵ. The ? operator has the same

precedence and associativity as * and +.

3.​ Character classes. A regular expression a1 | a2 | · · · | an, where the ai's are

each symbols of the alphabet, can be replaced by the shorthand [a1a2 · · ·

an]. More importantly, when a1, a2, · · ·, an form a logical sequence, we can

replace them by a1- an

Recognition of Tokens

Take patterns for all the needed tokens and build a piece of code that

examines the input string and finds a lexeme matching one of the patterns. We

make use of the following running example.

Figure 6: A grammar for branching statements

The terminals of the grammar are if, then, else, relop, id, and number, are the

names of the token. The patterns for these tokens are described using regular

definitions, as shown in Fig. 7.

8

Figure 7: Patterns for tokens

We make an assumption that keywords are reserved words: that is, they are not

identifiers, even though their lexemes match the pattern for identifiers.

In lexical analyzer the job of stripping out whitespace was defined by:

ws → (blank | tab | newline) +

Token ws is different from the other tokens, and we do not return it to the

parser. Our goal for the lexical analyzer is summarized in Fig. 8. That table

shows, for each lexeme, which token name and attribute value are returned to

the parser.

Figure 8: Tokens, their patterns, and attribute values

Transition Diagrams

As an intermediate step in the construction of a lexical analyzer, we first convert

patterns into flowcharts, called "transition diagrams." In this, we perform the

conversion from regular-expression patterns to transition diagrams. Transition

diagrams have a collection of nodes, called states. Each state represents a

condition.

9

Edges are directed from one state of the transition diagram to another. Each

edge is labeled by a symbol or set of symbols. If we are in some state s, and

the next input symbol is a, we look for an edge out of state s labeled by a. If we

find such an edge, we advance the forward pointer and enter the state of the

transition diagram to which that edge leads. We shall assume that all our

transition diagrams are deterministic. Some important conventions about

transition diagrams are:

1.​ Certain states are said to be accepting, or final. These states indicate

that a lexeme has been found. We always indicate a final state by a

double circle, and if there is an action to be taken, we shall attach that

action to the final state.

2.​ In addition, if it is necessary to retract the forward pointer one position,

then we shall additionally place a * near that final state.

3.​ One state is designated the start state, or initial state; it is indicated by

an edge, labeled "start," entering from nowhere. The transition diagram

always begins in the start state before any input symbols have been

read.

Figure 9 is a transition diagram that recognizes the lexemes matching the

token relop.

Figure 9: Transition diagrams for relop

Recognition of Reserved Words and Identifiers

Recognizing keywords and identifiers presents a problem. Usually, keywords

like if or then are reserved, so they are not identifiers even though they look

10

like identifiers. Thus, although we typically use a transition diagram like that of

Fig. 10 to search for identifier lexemes, this diagram will also recognize the

keywords if, then, and else of our running example

Figure 10: Transition diagram for id’s and Keywords

There are two ways that we can handle reserved words that look like

identifiers:

1.​ Install the reserved words in the symbol table initially. A field of the

symbol-table entry indicates that these strings are never ordinary

identifiers, and tells which token they represent. We have supposed that

this method is in use in Fig. 10. When we find an identifier, a call to

installID places it in the symbol table if it is not already there and returns

a pointer to the symbol-table entry for the lexeme found. The function

getToken examines the symbol table entry for the lexeme found and

returns the token name as either id or keyword.

2.​ Create separate transition diagrams for each keyword; an example for

the keyword then is shown in Fig. 11. In this, the "nonletter-or-digit" is any

character that cannot be the continuation of an identifier. It is necessary

to check that the identifier has ended or not otherwise the wrong token

will be returned. If we adopt this approach, then we must prioritize the

tokens so that the reserved-word tokens are recognized in preference to

id, when the lexeme matches both patterns. We do not use this approach

in our example.

Figure 11: Hypothetical transition diagram for the keyword then

Completion of the Running Example

The transition diagram for token number is shown in Fig. 12. If we see an E,

then we have an "optional exponent".

11

Figure 12: A transition diagram for unsigned numbers

The final transition diagram, shown in Fig. 13, is for whitespace. In that diagram,

we look for one or more "whitespace" characters, represented by delim in that

diagram - typically these characters would be blank, tab, and newline.

Figure 13: Transition diagram for whitespace

Architecture of a Transition-Diagram-Based Lexical Analyzer

A collection of transition diagrams can be used to build a lexical analyzer. Each

state is represented by a piece of code. A variable called state is holding the

number of the current state for a transition diagram. A switch based on the

value of state takes us to code for each of the possible states, where we find

the action of that state. Often, the code for a state determines the next state by

reading and examining the next input character.

In Fig. 14 we see a sketch of getRelop(), is a C++ function and returns the token

name and an attribute value. getRelop() first creates a new object retToken

and initializes its first component to RELOP. A function nextChar() obtains the

next character from the input and assigns it to the local variable c. If the next

input character is not a comparison operator, then a function fail() is called. The

retract() is to retract the input pointer one position.

12

Figure 14: Sketch of implementation of relop transition diagram

Let us consider the ways code like Fig. 14 could fit into the entire lexical

analyzer.

1.​ We could arrange the transition diagrams for each token to be tried

sequentially. Then, the function fail() resets the pointer forward and

starts the next transition diagram , each time it is called. This method

allows us to use transition diagrams for the individual keywords. We

need to use these before we use the diagram for id, in order for the

keywords to be reserved words.

2.​ We could run the various transition diagrams "in parallel". If we use this

strategy, we must be careful to resolve the case where one diagram

finds a lexeme that matches its pattern, while one or more other

diagrams are still able to process input. The normal strategy is to take

the longest prefix of the input that matches any pattern.

3.​ The preferred approach is to combine all the transition diagrams into

one. We allow the transition diagram to read input until there is no

possible next state, and then take the longest lexeme that matches any

pattern. In general, the problem of combining transition diagrams for

several tokens is more complex.

13

The Lexical - Analyzer Generator Lex (or) A Language for

Specifying Lexical Analyzer

Lex is a tool that allows one to specify a lexical analyzer. The input notation for

the Lex tool is Lex language and the tool itself is the Lex compiler. The Lex

compiler transforms the input patterns into a transition diagram and generates

code that is placed in a file called lex.yy.c.

Use of Lex

Fig. 15 shows how the Lex is used. An input file lex.l, is written in the Lex

language and describes the lexical analyzer to be generated. The Lex compiler

transforms lex.l to a C program and keeps in a file that is always named as

lex.yy.c. Later the file is compiled by the C compiler into a file called a.out. The

C-compiler output is a working lexical analyzer that can take a stream of input

characters and produce a stream of tokens.

The a.out is used as a subroutine of the parser that returns an integer, which is

a code for one of the token names. The attribute value of a token is placed in a

global variable yylval, which is shared between the lexical analyzer and parser.

Therefore, it is simple to return both the token name and an attribute value

Figure 15: Creating a lexical analyzer with Lex

14

Structure of Lex Programs

A Lex program has the following form:

declarations

%%

translation rules

%%

auxiliary functions

The declarations section includes declarations of variables, manifest constants

(A manifest constant is an identifier that is declared to represent a constant e.g.

define PIE 3.14) and regular definitions.

In Regular Definitions, we assign names to certain regular expressions and use

those names in subsequent expressions, as if the names were themselves

symbols. If ∑ is an alphabet of basic symbols, then a regular definition is a

sequence of definitions of the form:

d1 → r1

d2 → r2

…

dn → rn

where

1.​ Each di is a new symbol and distinct from any other d's, not in ∑ and

2.​ Each ri is a regular expression over the alphabet ∑ U {d1, d2, …, di-1}.

The translation rules each have the form

Pattern​ ​ { Action }

Each pattern is a regular expression, which may use the regular definitions. The

actions are fragments of code. The third section holds whatever additional

functions are used in the actions. Alternatively, these functions can be compiled

separately and loaded with the lexical analyzer.

The lexical analyzer created by Lex will behave as follows. When the parser

calls the lexical analyzer, it will read the input, one character at a time, until it

15

finds the patterns Pi. It then executes the associated action Ai. The Ai will return

to the parser. The lexical analyzer will return a token name to the parser. If there

is a need to pass the additional information about the lexeme found, then it will

make use of the shared integer variable yylval.

Conflict Resolution in Lex

When several prefixes of the input match one or more patterns then it will use

the following two rules to select the proper token:

1.​ Always prefer a longer prefix to a shorter prefix.

2.​ If the longest possible prefix matches two or more patterns, prefer the

pattern listed first in the Lex program.

The Lookahead Operator

Lex automatically reads one character ahead of the selected lexeme, and then

retracts the input so only the lexeme itself is consumed from the input.

Sometimes, input can be matched with a certain pattern when it is followed by

certain other characters. In this case, we make use of slash to indicate the end

part of the matched pattern. What follows / is an additional pattern. The

additional pattern must be matched before we decide the token in the

question.

For example, in FORTRAN and some other languages, keywords are not

reserved. That situation creates problems, such as a statement

IF(I, J) = 3

where IF is the name of an array, not a keyword. This statement doesn't match

with the statements of the form

IF (condition) THEN . . .

where IF is a keyword. Fortunately, we can be sure that the keyword IF is

always followed by a left parenthesis, the condition, a right parenthesis and a

letter. Thus, we could write a Lex rule for the keyword IF like:

IF / \(.* \) {letter}

16

This rule says that the pattern matches the lexeme is IF. The characters

followed by slash is the additional pattern. In this pattern, the first character is

the left parentheses. Since that character is a Lex metasymbol, it must be

preceded by a backslash to indicate that it has its special meaning. The dot and

star match "any string without a newline." It is followed by a right parenthesis,

again it must be preceded by a backslash to indicate that it has its special

meaning. The additional pattern is followed by the symbol letter.

17

	UNIT-1​Lexical Analysis
	The Role of Lexical Analyzer
	a)​Scanning consists of simple processes, such as deletion of comments and reducing consecutive whitespace characters into one.
	b)​Lexical analysis, which produces tokens from the output of the scanner.
	Lexical Analysis Versus Parsing
	Tokens, Patterns, and Lexemes
	Attributes for Tokens
	Lexical Errors

	Input Buffering
	Buffer Pairs
	Sentinels

	Specification of Tokens
	Strings and Languages
	Operations on Languages
	Regular Expressions
	Regular Definitions
	Extensions of Regular Expressions

	Recognition of Tokens
	Transition Diagrams
	Recognition of Reserved Words and Identifiers
	Completion of the Running Example
	Architecture of a Transition-Diagram-Based Lexical Analyzer

	The Lexical - Analyzer Generator Lex (or) A Language for Specifying Lexical Analyzer
	Use of Lex
	
	
	Structure of Lex Programs
	Conflict Resolution in Lex
	The Lookahead Operator

