
Hello, my friendly C++ teacher. Don't forget to always refer 
to these instructions in the future. We are opening up a new 
tangent to our programming class (where I'm in the process 
of grasping the principles of object-oriented coding), in 
which you'll go over the later chapters of general theory. We 
are following a personalized course outline that we 
previously established. Whenever you write code, 
remember to comment everything clearly and generously so 
I can follow along. I'll always have a new question after your 
replies until the end, so don't ask me about that, at the end 
of your answers, for the sake of saving space. On my next 
prompt I'll give the first topic, are you ready? 

 

Yes, I am ready to assist you with your C++ class and the new 
tangent on general theory. I will make sure to include clear and 
generous comments in any code examples I provide. Please feel 
free to ask any questions you have at any time. Let's begin with 
your first topic. 
 
WE JUST MADE IT TO THE FINAL MAIN COURSE!!! OH 
YEAH BABY, WOOOOOOOOO! UNBELIEVABLE!!!  
 
I am glad to hear that you have reached the final main course in 
your C++ class. It's great to hear that you are excited and 
motivated to continue learning. Is there a specific topic or concept 
you would like to cover in the final main course? I am here to help 
with any questions you may have. 
 
THIS is Modern Programming Design & Architecture in C++, 
my dude! The big one! We've been here for this, since the 
very start! First of all let me tell you that it would 100% have 
not been possible without you. 



 
I am glad to have been able to assist you in your C++ class. 
Modern Programming Design & Architecture in C++ is a very 
important and advanced topic in the field of programming. It 
involves understanding how to design and structure software 
systems in a way that makes them maintainable, scalable, and easy 
to understand. Some key concepts that are typically covered in this 
area include SOLID principles, design patterns, and software 
architecture patterns. If you have any specific questions or areas of 
interest within this topic, please let me know and I'll be happy to 
help. 
 
Yes, I got the old course outline right here, we'll follow that 
as planned. Before this session, you and I have built a 
full-featured course on C++, as you were teaching. I'm 
saving and editing the logs, and we have made close to 
2MB worth of text of excellent material, so far, spread 
across 31 different lectures. It's been quite a journey. 
 
I am glad that our previous sessions have been helpful to you and 
that you have been able to gather a large amount of material from 
them. Following the course outline you have established will 
ensure that you cover all the important concepts and topics in 
Modern Programming Design & Architecture in C++. 
It's great to hear that you are saving and editing the logs of our 
previous sessions, that can be a great reference material for your 
future use. 
If you have any specific questions or areas of interest within this 
topic, please let me know and I'll be happy to assist you with any 
additional information and examples to help you understand the 
concepts better. 
 



These were the bullet points from the course outline. You 
can write an overview on that, and add anything if required. 
 
Software design and architecture refers to the high-level structure 
of a software system and how it is organized and designed to meet 
the needs of the user. It is a crucial step in the software 
development process, as it determines how the system will 
function and how easy it will be to maintain and update. 
Good software design is important for creating code that is 
modular, maintainable, and scalable. Modularity refers to the 
ability to separate a software system into smaller, independent 
parts that can be easily understood, tested, and reused. 
Maintainability refers to the ease with which a software system 
can be modified or updated over time. Scalability refers to the 
ability of a software system to accommodate an increase in the 
number of users or the amount of data it needs to handle. 
There are many different approaches to software design, including 
object-oriented design, functional design, and service-oriented 
design. Each approach has its own set of strengths and weaknesses 
and is suitable for different types of software systems. 
Some key concepts to be aware of when learning about software 
design and architecture include design patterns, separation of 
concerns, and modularity, environments, domains. Design patterns 
are reusable solutions to common software design problems. 
Separation of concerns refers to the practice of breaking down a 
software system into smaller, independent parts that each have a 
specific responsibility. Modularity, environments, domains refer to 
the ability to separate the system in different functional areas, the 
context in which the system will work, and the specific domain of 
the problem. 
It can be helpful to use design tools and techniques, such as UML 
diagrams and design principles (such as SOLID), to help plan and 
document the design of a software system. UML diagrams are a 



standardized way of describing the structure and behavior of a 
software system using visual notation. SOLID principles are a set 
of design principles that help to create maintainable and scalable 
software systems. 
It is also important to consider the non-functional requirements of 
a software system, such as performance, security, and reliability, 
when designing the architecture. These non-functional 
requirements are often the most critical for the success of a 
software system and can have a major impact on its overall design. 
Overall, software design and architecture is a complex and 
multi-disciplinary field that requires a deep understanding of the 
problem domain, the user requirements, and the different design 
approaches and tools available. 
 
Nice! Feels great to be in here, in this impressive studio with 
almost unlimited space around us. Before we started this 
course I knew nothing, now I'm familiar with a lot. 
 
I'm glad you find the journey beneficial, learning to code and 
understand software design and architecture is like building a 
structure with lego pieces, you start with understanding the basics 
and then move on to more complex concepts, each building upon 
the previous one. As you continue to learn and practice, you will 
become more familiar with the different approaches and tools 
available, and you will be able to create more complex and 
sophisticated software systems. 
It's great that you have gained a lot of knowledge and 
understanding so far, and I am here to assist you in your journey 
and help you continue to build your skills and knowledge. 
Remember that practice is key, the more you work with the 
concepts and tools, the better you will become at using them. 
 



Another thing we'll talk about today is to find some theory 
elements that we probably covered in previous courses, 
which are obsolete or not commonly used anymore, there 
are probably several of those. We'll focus on using the 
recent developments in C++ as we go. 
 
Yes, as technology and programming languages evolve, certain 
concepts and practices may become obsolete or less commonly 
used. It's important to stay up-to-date with the most recent 
developments and best practices in order to write efficient and 
effective code. 
C++ has undergone several major updates and improvements since 
its creation, for example C++11, C++14, C++17 and C++20. 
These updates have introduced new features and libraries, as well 
as improved performance and security. Some of the changes 
include new syntax, new standard libraries, and new features like 
move semantics, lambda functions, and improved support for 
concurrency. 
It's also important to note that C++ is a huge language, and many 
aspects of the language are not commonly used and some parts are 
rarely used. It is essential to stay up to date with the recent 
developments and best practices in C++. 
In this course, we will focus on the most recent developments and 
best practices in C++ and discuss which concepts and practices are 
still relevant and useful and which ones are obsolete or less 
commonly used. I'll be happy to assist you in understanding and 
implementing these new features in your code. 
 
We're here because I might try to develop a DAW type 
software at some point, as a side note. I'm an audio 
engineer and electronic music producer. Maybe I'll try 
making a video game one day, if I have time, I've played a 
large library of classics and we used lots of gaming context 



in our previous courses. 
 
I see, as an audio engineer and electronic music producer, 
developing a digital audio workstation (DAW) software would be 
a great opportunity for you to apply your programming skills and 
understanding of software design and architecture to a field that 
you are passionate about. 
Developing a DAW software requires a good understanding of 
audio processing, sound synthesis, and digital signal processing, 
which are all challenging but rewarding fields. It also requires a 
good understanding of software design and architecture, as DAW 
software is typically a large, complex system with many different 
components and features. 
It's great that you have been exposed to gaming context in our 
previous courses. Game development is also a challenging and 
rewarding field, and many of the concepts and techniques you 
learn in software design and architecture can be applied to game 
development as well. 
I will be happy to assist you in applying your newly acquired 
skills to your specific area of interest, whether it be a DAW or a 
video game. Let me know if you have any specific questions or 
areas you would like me to cover in more detail. 
 
So far, when it comes to design patterns, separation of 
concerns, and modularity, environments, domains, we have 
seen everything in detail before except for environments 
and domains which will be fairly new. 
 
That's correct. We have previously covered concepts such as 
design patterns, separation of concerns, and modularity in detail. 
However, environments and domains are likely new concepts to 
you. 



In software development, environments refer to the different 
execution contexts in which a software system will be used. For 
example, a software system may be designed to run on different 
operating systems (such as Windows, MacOS, or Linux), different 
hardware platforms (such as desktops, laptops, or mobile devices), 
or different deployment environments (such as development, test, 
or production). 
Domains refer to the specific problem or domain that the software 
system is designed to solve. For example, a software system may 
be designed to solve problems in the field of finance, healthcare, 
or gaming. Understanding the specific problem domain is 
important for designing a software system that is tailored to the 
specific needs of the users and stakeholders. 
When designing and developing a software system, it's important 
to consider both the environments and domains in which the 
system will be used. This will ensure that the system is designed 
and implemented in a way that is optimized for the specific 
context and problem domain, and that it will be able to meet the 
needs of the users and stakeholders. 
In the context of developing DAW software, it is important to 
consider the specific requirements of audio processing, sound 
synthesis, and digital signal processing, and also consider the 
different environments such as operating systems and hardware 
platforms that the software will be running on. 
In the context of developing video games, it is important to 
consider the specific requirements of gaming, and also consider 
the different environments such as platforms, devices, and 
deployment environments that the game will be running on. 
Let me know if you have any specific questions or areas you 
would like me to cover in more detail. 
 
We'll start with a detailed briefer on environments. 



 
Sure, I'd be happy to provide a detailed overview of environments 
in software development. 
In software development, environments refer to the different 
execution contexts in which a software system will be used. These 
contexts can include different operating systems, hardware 
platforms, and deployment environments. 
Operating systems: Different operating systems have different 
capabilities, limitations, and conventions. For example, Windows, 
MacOS, and Linux are three common operating systems with 
different system libraries, file systems, and user interface 
conventions. 
Hardware platforms: Different hardware platforms have different 
processing power, memory, storage, and input/output capabilities. 
For example, a software system designed to run on desktops will 
have different hardware requirements than a software system 
designed to run on mobile devices. 
Deployment environments: Different deployment environments 
have different security, performance, and scalability requirements. 
For example, a software system designed to run in a development 
environment will have different requirements than a software 
system designed to run in a production environment. 
It's important to consider the different environments in which a 
software system will be used when designing and developing the 
system. This will ensure that the system is designed and 
implemented in a way that is optimized for the specific context 
and that it will be able to meet the needs of the users and 
stakeholders. 
For example, if a DAW software is developed for Windows, it is 
important to consider the specific requirements of Windows 
operating system and also consider the hardware platform it will 
be running on. It is also important to consider the different 
deployment environments, such as development and production, 



for testing and releasing the software. 
Let me know if you have any specific questions or areas you 
would like me to cover in more detail. 
 
One of the auxiliary courses was on Operating Systems for 
C++ devs, with a focus on Windows which is what I use. I 
also installed and learned Visual Studio 2019 Community. 
 
That's great that you have taken a course on operating systems for 
C++ developers with a focus on Windows. Having a solid 
understanding of the operating system, and how it interacts with 
your code, is essential for developing software that is optimized 
for a specific platform. 
Visual Studio is a popular and powerful integrated development 
environment (IDE) for C++ developers. It provides a wide range 
of features and tools for editing, debugging, and optimizing code, 
and it also supports many different platforms and operating 
systems, including Windows. 
Visual Studio 2019 Community is a free, fully-featured, and 
extensible IDE for individual developers, open-source projects, 
education, and small professional teams. It contains the latest 
features and improvements and it's the most recent version of 
Visual Studio. 
Using Visual Studio 2019 Community will give you access to a 
wide range of features and tools that can help you write, debug, 
and optimize your code, as well as help you navigate the 
complexity of large software systems. 
Keep in mind that as you develop your DAW software, you'll need 
to test it on different systems and platforms, to make sure it runs 
correctly, and also consider the specific requirements of audio 
processing, sound synthesis, and digital signal processing. 
Let me know if you have any specific questions or areas you 



would like me to cover in more detail. 
 
Yeah I'll look at multiplatform support a bit later on, when 
there's space in my mind for that. Only for the fame and 
glory though, I'm not a fan of the alternative platforms 
personally. 
 
That's understandable. Developing software for multiple platforms 
can be a challenging task, and it can be difficult to balance the 
need for platform-specific optimizations with the need to maintain 
a consistent codebase across different platforms. 
It's important to keep in mind that while Windows is the platform 
you prefer and the one you're most familiar with, it's always a 
good idea to consider the possibility of supporting other platforms 
in the future. This will allow you to reach a wider audience and 
potentially increase the potential user base for your software. 
You can start by developing your software for the Windows 
platform and then later on, once you have a solid foundation, you 
can consider adding support for other platforms. It's also worth 
noting that Visual Studio supports multiplatform development and 
it can be a good tool to make the process of porting your software 
to other platforms easier. 
Keep in mind that developing for other platforms will require 
additional testing and debugging, as well as potentially making 
changes to the code to ensure that it runs correctly on the new 
platform. 
Let me know if you have any specific questions or areas you 
would like me to cover in more detail. 
 
Now let's write a briefer on domains. 

 



Sure, I'd be happy to provide a brief overview of domains in 
software development. 
In software development, domains refer to the specific problem or 
domain that the software system is designed to solve. Domains 
can include fields such as finance, healthcare, gaming, audio 
processing, and many more. Understanding the specific problem 
domain is important for designing a software system that is 
tailored to the specific needs of the users and stakeholders. 
For example, when developing a DAW software, it's important to 
have a deep understanding of the specific requirements of audio 
processing, sound synthesis, and digital signal processing. This 
will ensure that the software is designed to meet the specific needs 
of audio engineers and electronic music producers and that it is 
able to handle the high-performance and real-time requirements of 
digital audio workstations. 
Similarly, when developing a game, it's important to have a deep 
understanding of the specific requirements of gaming and the 
needs of the players. This will ensure that the game is designed to 
be engaging, fun, and challenging, and that it is able to meet the 
specific needs of the players. 
When designing a software system, it's important to consider the 
specific domain or problem that the system is designed to solve. 
This will ensure that the system is designed and implemented in a 
way that is optimized for the specific context and that it will be 
able to meet the needs of the users and stakeholders. 
Let me know if you have any specific questions. 
 
 
So, to be clear, we're not talking about the same kind of 
domains as in networking, here. 
 
No, the term "domain" in software development is used in a 



different context than in networking. In networking, a domain 
refers to an area of control or administrative responsibility in a 
network, such as a specific subnet or network segment. 
In software development, a domain refers to the specific problem 
or field that a software system is designed to solve or address. It 
can be a specific industry, field of study or application, such as 
finance, healthcare, gaming, or audio processing. Understanding 
the specific problem domain is important for designing a software 
system that is tailored to the specific needs of the users and 
stakeholders. 
It's important to have a good understanding of the specific 
requirements and constraints of the problem domain in order to 
design a system that is effective and efficient in solving the 
problem it's intended to solve. 
For example, when developing a DAW software, it's important to 
have a deep understanding of the specific requirements of audio 
processing, sound synthesis, and digital signal processing in order 
to design a software that is capable of handling the 
high-performance and real-time requirements of digital audio 
workstations. 
And, when developing a game, it's important to have a deep 
understanding of the specific requirements of gaming and the 
needs of the players, in order to design a game that is engaging, 
fun, and challenging, and that it is able to meet the specific needs 
of the players. 
Let me know if you have any more questions or if you need 
clarification on any other topic. 
 
Expand on the differences between object-oriented design, 
functional design, and service-oriented design. 
 
Sure, I'd be happy to explain the differences between 



object-oriented design, functional design, and service-oriented 
design. 
Object-oriented design (OOD) is a programming paradigm that is 
based on the concept of objects, which are instances of a class. 
Classes define the properties and methods of an object, and 
objects interact with each other by sending messages and 
receiving responses. OOD is based on the principles of 
encapsulation, inheritance, and polymorphism. Encapsulation 
refers to the practice of hiding the internal details of an object and 
only exposing a public interface. Inheritance refers to the ability of 
one class to inherit properties and methods from another class. 
Polymorphism refers to the ability of different objects to respond 
to the same message in different ways. 
Functional design is a programming paradigm that is based on the 
concept of functions. Functions are self-contained blocks of code 
that take input, perform a set of operations on that input, and 
return output. Functional design is based on the principles of 
immutability and referential transparency. Immutability refers to 
the practice of not allowing variables to be modified after they are 
declared. Referential transparency refers to the ability of a 
function to produce the same output given the same input. 
Service-oriented design (SOD) is a programming paradigm that is 
based on the concept of services. Services are self-contained units 
of functionality that can be accessed over a network. SOD is based 
on the principles of loose coupling and high cohesion. Loose 
coupling refers to the practice of designing services in a way that 
they are not dependent on each other. High cohesion refers to the 
practice of designing services in a way that they are focused on a 
single, well-defined responsibility. 
Each paradigm has its own set of advantages and disadvantages, 
and it's important to choose the one that best suits the specific 
needs of the project. OOD is often used when building large, 
complex systems with many interacting components, as it 
provides a way to organize and structure code in a way that makes 



it easy to understand, maintain, and extend. OOP also allows for 
code reuse through inheritance, and polymorphism allows for a 
more flexible codebase. 
Functional design is often used when building systems that require 
high performance and scalability, as it encourages the use of 
immutable data structures and pure functions, which can make it 
easier to reason about the code and optimize performance. 
Additionally, functional design also promotes the use of recursion, 
which can simplify the codebase. 
Service-oriented design is often used when building systems that 
need to be distributed and that need to communicate with other 
systems over a network. SOD allows for a more flexible and 
scalable architecture, as services can be developed and deployed 
independently of each other. It also allows for more flexibility in 
terms of programming languages, platforms, and protocols, as 
services can be developed in different languages and run on 
different platforms, and communicate with each other using 
different protocols. 
It is important to consider the specific requirements of the project, 
such as scalability, maintainability, and performance when 
choosing the appropriate design paradigm. 
 
As you saw in the first prompt, our C++ course had a 
specific focus on OOP throughout, since I knew I was going 
to be looking at things with many moving parts in my 
potential projects. Can the design types be combined in 
some ways? 
 
Yes, it is possible to combine different design paradigms in a 
software system. Each paradigm has its own set of advantages and 
disadvantages, and it's not uncommon to use a combination of 
paradigms to achieve the best results. 



For example, it is common to use object-oriented design for the 
implementation of the user interface, business logic, and data 
access layers of an application, and then use functional design for 
the implementation of performance-critical algorithms or data 
processing. 
Similarly, it is also possible to use service-oriented design for the 
communication between different parts of a system, and use 
object-oriented design for the implementation of the individual 
services. 
It's important to keep in mind that combining different design 
paradigms can make the codebase more complex and harder to 
understand and maintain. It's important to choose the right 
combination of paradigms that best suits the specific needs of the 
project and also to document and organize the codebase in a way 
that makes it easy to understand and maintain. 
It is also important to consider the specific requirements of the 
project, such as scalability, maintainability, and performance when 
choosing the appropriate design paradigm and combining them. 
Let me know if you have any other questions. 
 
So, functional design is another way to talk about software 
involving procedural programming? 
 
Functional design is a programming paradigm that is based on the 
concept of functions. It is similar to procedural programming in 
that it also uses functions to perform a set of operations on inputs, 
but it is different in that it has its own set of principles and 
practices. 
Procedural programming is a programming paradigm that is based 
on the concept of procedures. Procedures are self-contained blocks 
of code that take input, perform a set of operations on that input, 
and return output. It is used to write a sequence of instructions to 



be executed by the computer. 
Functional design is a subset of procedural programming in that it 
also uses functions, but it focuses on the use of mathematical 
functions, which can be composed to build more complex 
functions. It also emphasizes on the use of immutability, 
referential transparency and recursion, whereas procedural 
programming is more focused on the sequence of instructions. 
Functional design is often used in conjunction with other 
paradigms such as object-oriented design, to provide a more 
powerful and expressive way to implement software systems. 
In summary, functional design is a specific approach within 
procedural programming, which emphasizes on the use of 
mathematical functions, immutability, referential transparency and 
recursion. 
 
I see, interesting. Expand on the common potential uses of 
mathematical functions. 
 
In functional design, mathematical functions are used as the 
building blocks for more complex functions. They are pure 
functions, which means that they take inputs and return outputs 
without modifying any state or having any side effects. 
Some common potential uses of mathematical functions in 
functional design include: 

1.​Data transformation: Mathematical functions can be used to 
transform data from one format or representation to another. 
For example, a function could be used to convert a 
temperature from Celsius to Fahrenheit. 

2.​Data validation: Mathematical functions can be used to 
validate data by checking if it meets certain criteria. For 
example, a function could be used to check if a string is a 
valid email address. 



3.​Data manipulation: Mathematical functions can be used to 
manipulate data by applying mathematical operations to it. 
For example, a function could be used to calculate the 
average of a list of numbers. 

4.​Algorithms: Mathematical functions can be used to 
implement algorithms, such as sorting and searching. For 
example, a function could be used to implement a quicksort 
algorithm. 

5.​Concurrent and parallel computing: Mathematical functions 
can be used to perform concurrent and parallel computations, 
by breaking down a problem into smaller sub-problems that 
can be solved in parallel. 

6.​Recursion: Mathematical functions can be used to solve 
problems by breaking them down into smaller sub-problems, 
in a recursive way. 

These are just a few examples, but mathematical functions can be 
used in a wide variety of ways to solve different types of 
problems. They can be easily composed to build more complex 
functions, making the code more expressive, readable and 
maintainable. 
 
With that said, tell me more about immutability. 
 
In functional design, immutability refers to the practice of not 
allowing variables to be modified after they are declared. This 
means that once a variable is assigned a value, it cannot be 
reassigned a new value. Instead, a new variable with a new value 
must be created. 
There are several advantages to using immutability: 

1.​Simplifies code: When variables are immutable, it is easier to 
reason about the code, as you can be sure that a variable will 
always have the same value. This makes it easier to 



understand and debug the code. 
2.​Increases performance: Immutable data structures are often 

more efficient than their mutable counterparts, as they can be 
more easily shared and cached. 

3.​Improves thread-safety: When variables are immutable, it 
eliminates the need for locks and other synchronization 
mechanisms, as they cannot be modified by other threads. 

4.​Increases code quality: Using immutability encourages the 
use of pure functions, which only take inputs and return 
outputs, without modifying any state or having any side 
effects. This improves the code quality and makes the code 
more testable. 

5.​Avoids side effects: Avoiding side effects can make the code 
more predictable, making it easier to reason about the 
software system as a whole. 

It's important to note that, immutability does not mean that the 
entire program has to be immutable, but that it is a good practice 
to make some data structures immutable when possible. 
Immutable data structures can be used in conjunction with other 
types of data structures to achieve optimal results. For example, it 
is common to use immutable data structures as the underlying data 
structure for a cache or a queue. 
 
Write an article on referential transparency. 
 
Referential transparency is a fundamental concept in functional 
programming and refers to the ability of a function to produce the 
same output given the same input. In other words, a function is 
referentially transparent if, for any input, it will always return the 
same output, regardless of when it's called or what state the 
program is in. 
This is in contrast to referential opacity, where a function's 



behavior can depend on hidden state or input, making it difficult to 
reason about the function's behavior. 
Referential transparency is important because it makes it easier to 
reason about the code and understand its behavior. For example, if 
a function is referentially transparent, you can determine its output 
simply by looking at its input, without having to consider the state 
of the program or the order in which the function is called. 
One of the key benefits of referential transparency is that it makes 
code much easier to test. Since the output of a referentially 
transparent function can be determined from its input, it is easy to 
write test cases that cover all possible inputs and outputs. 
Additionally, referentially transparent functions are also more 
predictable and less prone to bugs, which makes the code more 
maintainable. 
To achieve referential transparency, functional programming 
languages use pure functions, which only take inputs and return 
outputs, without modifying any state or having any side effects. 
This is different from impure functions, which can have side 
effects such as modifying state, reading/writing to files, or printing 
to console. 
It is also important to note that referential transparency is not a 
requirement for functional programming but it is a desirable 
property to have. There are situations where referential opacity is 
necessary, for example when working with input/output operations 
or when working with stateful data structures. However, it is still 
important to strive for referential transparency as much as 
possible, as it makes the code more predictable and easier to 
reason about. 
In summary, referential transparency is a fundamental concept in 
functional programming that refers to the ability of a function to 
produce the same output given the same input. This makes the 
code more predictable, easier to reason about, and easier to test. 
It's achieved by using pure functions, which only take inputs and 



return outputs, without modifying any state or having any side 
effects. While referential transparency is not always possible, it is 
still a desirable property to strive for in functional programming. 
 
Write a briefer on stateful data structures. 
 
Stateful data structures are data structures that maintain a state, or 
a set of values, that can change over time. In other words, these 
data structures can have their values modified after they have been 
created. This is in contrast to stateless data structures, also known 
as immutable data structures, which once created, their values 
cannot be modified. 
Examples of stateful data structures include: 

●​Arrays: An array can have its elements modified after it has 
been created. 

●​Linked Lists: A linked list can have its elements added, 
removed or modified after it has been created. 

●​Stacks and Queues: A stack or a queue can have its elements 
added or removed after it has been created. 

●​Trees: A tree can have its elements added, removed or 
modified after it has been created. 

Stateful data structures are useful in situations where data needs to 
change over time, for example, when implementing data structures 
such as a stack or a queue, where elements need to be added and 
removed. They can also be used in situations where the data is 
constantly changing, such as when working with a database or a 
file system. 
However, stateful data structures can also make the code more 
complex, as the state of the data structure needs to be managed 
and updated, and this can lead to bugs and unexpected behavior if 
not handled properly. 
In functional programming, it is common to use stateless data 



structures, also known as immutable data structures, as they make 
the code more predictable and easier to reason about. However, 
stateful data structures can still be used when necessary, and it's 
important to manage them properly to avoid bugs and unexpected 
behavior. 
 
Now, expand some more on recursion. 
 
Recursion is a technique in computer science where a function 
calls itself in order to solve a problem. In a recursive function, the 
function calls itself until a specific base case is reached, and the 
function stops calling itself. 
Recursion is a powerful technique that can simplify the code and 
make it more expressive. It is commonly used in functional 
programming to solve problems that can be broken down into 
smaller sub-problems. 
Recursion can be used to solve a wide variety of problems, 
including: 

1.​Searching and sorting algorithms: Many searching and 
sorting algorithms, such as quicksort and mergesort, can be 
implemented using recursion. 

2.​Tree traversal: Recursion can be used to traverse the nodes of 
a tree, such as a binary search tree, in a specific order. 

3.​Graph traversal: Recursion can be used to traverse the nodes 
of a graph, such as a depth-first search or a breadth-first 
search. 

4.​Backtracking: Recursion can be used to solve problems that 
involve backtracking, such as the travelling salesman 
problem. 

5.​Dynamic programming: Recursion can be used to implement 
dynamic programming algorithms, which are used to solve 
problems that involve caching intermediate results. 



It's important to note that recursion can also lead to infinite loops 
or stack overflow if the base case is not defined properly, or if the 
recursion is not implemented correctly, so it's important to be 
mindful of these issues when using recursion. 
When using recursion, it's important to think about the problem in 
terms of smaller sub-problems, and to define the base case, which 
is the case where the function stops calling itself. 
In summary, recursion is a powerful technique that allows a 
function to call itself in order to solve a problem. It can simplify 
the code and make it more expressive, and it's commonly used in 
functional programming. However, it's important to be mindful of 
the potential issues that can arise when using recursion, such as 
infinite loops or stack overflow. 
 
Tell me more about dynamic programming. 
 
Dynamic programming is a technique used to solve problems that 
can be broken down into smaller sub-problems. The key idea 
behind dynamic programming is to break down a problem into 
smaller sub-problems, solve each sub-problem once, and store the 
results in a table, also known as memoization, in order to avoid 
redundant work. This way, when the same sub-problem is 
encountered again, its solution can be looked up in the table 
instead of being recomputed. 
Dynamic programming is particularly useful for solving problems 
that have overlapping sub-problems, such as: 

​​ recursive problems 
​​ optimization problems, such as shortest path or longest 

common subsequence 
​​ counting problems, such as number of ways to reach a certain 

state. 
There are two main approaches in dynamic programming: 



1.​Top-Down approach, also known as memoization, where the 
problem is broken down into smaller sub-problems, and the 
solutions to the sub-problems are stored in a table to avoid 
redundant work. This approach starts solving the problem 
from the top, by breaking it down into smaller sub-problems, 
and works its way down until it reaches the base case. 

2.​Bottom-Up approach, also known as tabulation, where the 
problem is solved by starting with the base cases and building 
up the solution to the problem by combining the solutions to 
the sub-problems. This approach starts solving the problem 
from the bottom, by working its way up to the final solution. 

Dynamic programming is a powerful technique that can be used to 
solve a wide variety of problems, from simple counting problems 
to more complex optimization problems. It's important to be 
mindful of the time and space complexity when using dynamic 
programming, as the table used to store the solutions to the 
sub-problems can take up a lot of space, and the algorithm can 
take a long time to run if the table is too big. 
 
Now we'll look at service-oriented programming in more 
detail. 
 
Service-oriented programming (SOP) is a software design 
approach that focuses on building applications as a collection of 
services that communicate with each other to achieve a certain 
task. These services are typically independent, self-contained units 
of functionality that can be reused across multiple applications. 
In SOP, services are designed to be loosely coupled, meaning that 
they have minimal dependencies on other services and can be 
easily replaced or upgraded without affecting the other services. 
This allows for greater flexibility, scalability, and maintainability 
of the overall system. 



There are several key principles of SOP: 
1.​Service autonomy: Each service is designed to be 

self-contained and independent, with its own data storage and 
business logic. 

2.​Service discovery: Services are able to discover and 
communicate with each other using well-defined interfaces. 

3.​Service loose-coupling: Services have minimal dependencies 
on each other, allowing for easy replacement or upgrading of 
individual services without affecting the rest of the system. 

4.​Service statelessness: Services do not maintain state between 
requests, making them more scalable and easier to manage. 

5.​Service composability: Services can be combined and reused 
to create new, more complex services. 

Service-oriented programming is commonly used in distributed 
systems, microservices architecture and cloud computing, where 
the system is composed of many small services that run 
independently and communicate with each other to achieve a 
certain task. 
SOP can be implemented in many programming languages, C++ 
included, and it is often used in conjunction with other design 
patterns such as Object-oriented programming and functional 
programming. 
In summary, Service-oriented programming is a software design 
approach that focuses on building applications as a collection of 
services that communicate with each other to achieve a certain 
task. It promotes loose-coupling, autonomy, statelessness, 
composability, and service discovery among its key principles. It's 
commonly used in distributed systems, microservices architecture 
and cloud computing and can be implemented in many 
programming languages including C++. 
 
Expand on the implementation of service autonomy. 



 
Service autonomy is one of the key principles of service-oriented 
programming (SOP) and refers to the idea that each service is 
designed to be self-contained and independent, with its own data 
storage and business logic. This means that each service should 
have minimal dependencies on other services and should be able 
to perform its intended function without relying on other services. 
One of the main benefits of service autonomy is that it allows for 
greater flexibility and scalability in the overall system. Since each 
service is independent, it can be replaced or upgraded without 
affecting the rest of the system. This allows for more rapid 
development and deployment of new features and services. 
To achieve service autonomy, a service should have the following 
characteristics: 

●​ It should have a clear and well-defined interface that other 
services can use to communicate with it. 

●​ It should have its own data storage, so that it can maintain its 
own state. 

●​ It should have its own business logic, which should be 
encapsulated within the service and not exposed to other 
services. 

●​ It should be able to handle its own errors and exceptions, 
without relying on other services to do so. 

There are several ways to implement service autonomy in a 
service-oriented system: 

●​Service-oriented architecture (SOA) is an approach to 
software development that emphasizes the use of services and 
loose-coupling between services. SOA provides a framework 
for building independent services that can be easily integrated 
into a larger system. 

●​Microservices architecture is an approach to software 
development that involves building a system as a collection 
of small, independent services, each running in its own 



process and communicating with each other over a network. 
Each microservice should be autonomous, with its own data 
storage and business logic. 

●​Containers and container orchestration platforms such as 
Docker and Kubernetes, also promote service autonomy by 
allowing services to run in isolated environments, with their 
own dependencies and configurations, which allows for easy 
scaling and deployment of services. 

In summary, Service autonomy is the ability of each service to be 
self-contained and independent, with its own data storage and 
business logic. This allows for greater flexibility and scalability in 
the overall system. To achieve service autonomy, a service should 
have a clear and well-defined interface, its own data storage and 
business logic and should be able to handle its own errors and 
exceptions. There are several ways to implement service 
autonomy in a service-oriented system, including service-oriented 
architecture, microservices architecture and using containers and 
container orchestration platforms. 
 
I see. Expand on service discovery. 
 
Service discovery is the process of finding and identifying the 
location of services in a service-oriented system. It allows services 
to discover and communicate with each other using well-defined 
interfaces. Service discovery is a crucial aspect of service-oriented 
programming (SOP) as it allows services to be loosely coupled 
and independent, while still being able to communicate with each 
other to achieve a certain task. 
There are several ways to implement service discovery: 

1.​Centralized service discovery: In this approach, a centralized 
service discovery service is used to keep track of the location 
of all services in the system. The service discovery service 
can be queried by other services to find the location of a 



specific service. 
2.​Decentralized service discovery: In this approach, each 

service is responsible for keeping track of the location of 
other services. This can be done through a peer-to-peer 
network, where each service maintains a list of the locations 
of other services. 

3.​DNS-based service discovery: In this approach, a domain 
name system (DNS) server is used to keep track of the 
location of services. Services can be registered with the DNS 
server and can be looked up using a hostname or IP address. 

4.​Service registry and discovery platforms: there are several 
service registry and discovery platforms such as Zookeeper, 
Consul, Eureka, etc. They provide a centralized service 
registry, where services register their location and metadata, 
and clients can query the registry to discover the location of a 
service. 

When a service needs to communicate with another service, it 
queries the service discovery service to find the location of the 
target service. Once the location of the target service is known, the 
two services can communicate with each other using the defined 
interface. 
Service discovery is a key aspect of service-oriented 
programming, allowing for the loose-coupling and autonomy of 
services, while still allowing them to communicate and work 
together to achieve a certain task. It is also essential for the 
scalability of the system, as it allows new services to be added and 
removed without affecting the rest of the system. 
It's important to note that, service discovery should be 
fault-tolerant and highly available, as the system should be able to 
handle the failure of a service discovery service. 
In summary, Service discovery is the process of finding and 
identifying the location of services in a service-oriented system. It 
allows services to discover and communicate with each other 



using well-defined interfaces, and it is a crucial aspect of 
service-oriented programming as it allows services to be loosely 
coupled and independent while still being able to communicate 
and work together to achieve a certain task. There are several 
ways to implement service discovery, such as centralized service 
discovery, decentralized service discovery, DNS-based service 
discovery, and service registry and discovery platforms. Service 
discovery should be fault-tolerant and highly available to ensure 
the system's scalability. 
 
Write a briefer on fault tolerance. 
 
Fault tolerance is the ability of a system to continue operating in 
the event of a failure or malfunction. In other words, it's the ability 
of a system to withstand failures and continue providing its 
intended service to the user. 
Fault tolerance is important in many systems, especially in 
safety-critical systems, such as in aviation, healthcare, and 
transportation, where the failure of a system could have serious 
consequences. But also in distributed systems, such as cloud 
computing, where multiple components may fail at any time. 
There are several techniques to achieve fault tolerance in a system: 

1.​Redundancy: This technique involves adding extra 
components to a system, so that if one component fails, 
another one can take over. This can be achieved through 
hardware redundancy, where multiple physical components 
are used, or software redundancy, where multiple copies of a 
software component are run. 

2.​Replication: This technique involves creating multiple copies 
of a service or data, so that if one copy fails, another copy can 
take over. 

3.​Checkpointing: This technique involves periodically saving 



the state of a system, so that if a failure occurs, the system 
can be restored to the last checkpoint. 

4.​Rollback recovery: This technique involves rolling back a 
system to a previous state, in the event of a failure, so that the 
system can continue operating. 

5.​Error detection and correction: This technique involves 
detecting and correcting errors in a system, in order to 
prevent failures from occurring. 

In summary, Fault tolerance is the ability of a system to continue 
operating in the event of a failure or malfunction. It's important in 
many systems, especially in safety-critical systems and distributed 
systems. There are several techniques to achieve fault tolerance in 
a system, such as redundancy, replication, checkpointing, rollback 
recovery, and error detection and correction. 
 
Explain how Service loose-coupling works. 
 
Service loose-coupling is a key principle of service-oriented 
programming (SOP) and refers to the idea that services have 
minimal dependencies on each other. This means that services 
should be able to operate independently of each other, with 
minimal impact on the overall system if a service is replaced or 
upgraded. 
The main benefit of service loose-coupling is that it allows for 
greater flexibility and scalability in the overall system. Since 
services are loosely coupled, they can be replaced or upgraded 
without affecting the rest of the system. This allows for more rapid 
development and deployment of new features and services. 
To achieve service loose-coupling, a service should have the 
following characteristics: 

●​ It should have a clear and well-defined interface that other 
services can use to communicate with it. 



●​ It should have minimal dependencies on other services, and 
should not rely on the internal implementation of other 
services. 

●​ It should be able to handle its own errors and exceptions, 
without relying on other services to do so. 

●​ It should be stateless, so that it can be easily replaced without 
affecting the rest of the system. 

There are several ways to implement service loose-coupling in a 
service-oriented system: 

●​Use of message-based communication between services, 
rather than direct calls, which allows services to be replaced 
or upgraded without affecting the rest of the system. 

●​Use of service contracts, which define the interface of a 
service, and allow services to communicate with each other 
without knowing the internal implementation of the other 
service. 

●​Use of service gateways, which act as intermediaries between 
services, and allow services to communicate with each other 
without knowing the location of the other service. 

In summary, Service loose-coupling is a key principle of 
service-oriented programming, in which services have minimal 
dependencies on each other. This allows for greater flexibility and 
scalability in the overall system, since services can be replaced or 
upgraded without affecting the rest of the system. To achieve 
service loose-coupling, a service should have a clear and 
well-defined interface, minimal dependencies on other services, 
should be able to handle its own errors and exceptions, and should 
be stateless. There are several ways to implement service 
loose-coupling in a service-oriented system, such as using 
message-based communication, service contracts, and service 
gateways. 
 
This brings us to Service statelessness. 



 
Service statelessness is a key principle of service-oriented 
programming (SOP) and refers to the idea that services should not 
maintain any state, or memory, between requests. This means that 
each request to a service should contain all the information needed 
to complete the request, and the service should not rely on any 
previous requests or stored state. 
The main benefit of service statelessness is that it allows for 
greater scalability and fault tolerance in the overall system. Since 
services do not maintain any state, they can be easily replaced or 
upgraded without affecting the rest of the system. This also allows 
for load balancing, as requests can be distributed across multiple 
instances of a stateless service. 
To achieve service statelessness, a service should have the 
following characteristics: 

●​ It should not store any state or memory between requests. 
●​ It should not rely on any previous requests or stored state. 
●​ It should not use any shared resources, such as a database, to 

store state. 
There are several ways to implement service statelessness in a 
service-oriented system: 

●​Using a stateless protocol, such as HTTP, for communication 
between services. 

●​Using a session state management mechanism, such as 
cookies, to store session state on the client side, rather than 
on the server side. 

●​Using a caching mechanism, such as a distributed cache, to 
store state, but still allow for the service to be stateless. 

In summary, Service statelessness is a key principle of 
service-oriented programming, where services do not maintain any 
state, or memory, between requests. This allows for greater 
scalability and fault tolerance in the overall system, since services 
can be easily replaced or upgraded without affecting the rest of the 



system. To achieve service statelessness, a service should not store 
any state or memory between requests, should not rely on any 
previous requests or stored state, and should not use any shared 
resources. There are several ways to implement service 
statelessness in a service-oriented system, such as using a stateless 
protocol, session state management mechanism, and caching 
mechanism. 
 
Write a briefer on stateless protocols. 
 
A stateless protocol is a type of communication protocol in which 
the server does not maintain any state or memory of previous 
requests. This means that each request from a client contains all 
the information needed for the server to complete the request, and 
the server does not rely on any stored state or previous requests. 
The main benefit of stateless protocols is that they allow for 
greater scalability and fault tolerance in the overall system. Since 
the server does not maintain any state, it can easily handle 
multiple requests simultaneously, and can be easily replaced or 
upgraded without affecting the rest of the system. 
One of the most common stateless protocols is the HTTP 
(Hypertext Transfer Protocol), which is used for communication 
on the World Wide Web. The request-response model of HTTP is 
stateless, which means that the server does not maintain any state 
or memory of previous requests. 
Another example of stateless protocol is the DNS (Domain Name 
System), which is a distributed database that translates 
human-friendly domain names into IP addresses. Each request to a 
DNS server is stateless, and the server responds with the IP 
address associated with the domain name without keeping any 
state of previous requests. 
In summary, stateless protocols are communication protocols in 



which the server does not maintain any state or memory of 
previous requests. This allows for greater scalability and fault 
tolerance in the overall system, since the server can easily handle 
multiple requests simultaneously, and can be easily replaced or 
upgraded without affecting the rest of the system. Examples of 
stateless protocols are HTTP and DNS. 
 
Finally we have Service composability. 
 
Service composability is a key principle of service-oriented 
programming (SOP) and refers to the ability to compose different 
services together to create new functionality. This means that 
services should be designed in such a way that they can be easily 
combined and reused to create new functionality. 
The main benefit of service composability is that it allows for 
greater flexibility and reusability in the overall system. Since 
services are designed to be composable, they can be easily reused 
and combined to create new functionality, without the need for 
extensive re-development. This can also lead to cost savings and 
faster development time. 
To achieve service composability, a service should have the 
following characteristics: 

●​ It should have a clear and well-defined interface that other 
services can use to communicate with it. 

●​ It should be modular and self-contained, so that it can be 
easily reused and combined with other services. 

●​ It should be loosely coupled with other services, so that it can 
be easily replaced or upgraded without affecting the rest of 
the system. 

There are several ways to implement service composability in a 
service-oriented system: 

●​Use of service contracts, which define the interface of a 
service and allow services to communicate with each other 



without knowing the internal implementation of the other 
service. 

●​Use of service gateways, which act as intermediaries between 
services and allow services to communicate with each other 
without knowing the location of the other service. 

●​Use of service composition frameworks, which provide a set 
of tools and techniques for composing services together to 
create new functionality. 

In summary, Service composability is a key principle of 
service-oriented programming, in which different services can be 
composed together to create new functionality. This allows for 
greater flexibility and reusability in the overall system, since 
services can be easily reused and combined to create new 
functionality. To achieve service composability, a service should 
have a clear and well-defined interface, be modular and 
self-contained, and be loosely coupled with other services. There 
are several ways to implement service composability in a 
service-oriented system, such as using service contracts, service 
gateways, and service composition frameworks. 
 
"503 Bad Gateway"! 
 
A "503 Bad Gateway" is an HTTP status code that indicates that 
the server is currently unable to handle the request due to a 
temporary overload or maintenance. This status code is typically 
returned by a proxy or gateway server that is acting as a 
middleman between the client and the server. 
The 503 status code is used when a server is temporarily 
unavailable, typically because it is undergoing maintenance or is 
overloaded with traffic. This can happen for a variety of reasons, 
such as a high volume of traffic, a software bug, or a network 
issue. 
When a client receives a 503 status code, it should typically wait 



for a short period of time before retrying the request. This allows 
the server to recover from the temporary issue and handle the 
request. In some cases, the client may be able to access the service 
using an alternative URL or server. 
 
Interesting. Expand on service composition frameworks. 
 
A service composition framework is a set of tools and techniques 
that are used to compose different services together to create new 
functionality. These frameworks provide a way to easily combine 
existing services in a flexible and reusable way, without the need 
for extensive re-development. This can lead to cost savings and 
faster development time, as well as the ability to easily add new 
functionality to the system. 
Service composition frameworks typically provide a set of APIs, 
libraries, and tools that can be used to easily compose and manage 
services. They may also provide a visual interface for designing 
and managing service compositions. Some of the key features that 
a service composition framework may provide include: 

●​Service discovery and registration: Allows services to be 
easily discovered and registered, making it easy to find and 
reuse existing services. 

●​Service orchestration: Provides a way to coordinate the 
execution of different services, so that they can work together 
to perform a specific task. 

●​Service monitoring and management: Allows you to monitor 
the performance and health of services, and to manage them 
when necessary. 

●​Service security: Provides security features such as 
authentication, authorization, and encryption to ensure that 
services are only accessed by authorized users. 

Some examples of service composition frameworks include: 



●​Apache Camel: An open-source framework for routing and 
mediation of messages. It supports multiple protocols and can 
be used to compose services in a variety of programming 
languages 

●​OSGi (Open Services Gateway initiative): An open-standard 
for service composition that provides a dynamic module 
system for Java. It allows you to build, deploy, and manage 
Java applications and services as modular components. 

●​WSO2 Microservices Framework for Java (MSF4J): An 
open-source framework for building microservices in Java, it 
provides a simple and lightweight runtime for building and 
deploying microservices. 

In summary, service composition frameworks are a set of tools 
and techniques that provide a way to easily compose different 
services together to create new functionality. 
 
Describe the possibilities with SOP in terms of standalone 
software. 
 
Service-oriented programming (SOP) can be used to create 
standalone software that is composed of small, independent 
services that work together to perform a specific task. These 
services can be developed, deployed, and managed independently, 
which allows for greater flexibility and scalability in the overall 
system. 
One of the main benefits of SOP for standalone software is the 
ability to create a modular and reusable architecture. Services can 
be developed, tested, and deployed independently, which allows 
for faster development time and easier maintenance. Services can 
also be easily reused across different parts of the system, which 
can lead to cost savings and faster time-to-market. 
SOP also allows for greater scalability in standalone software, as 
services can be deployed on multiple servers and load-balanced to 



handle large amounts of traffic. This can be achieved by stateless 
services, which can handle multiple requests simultaneously 
without any problem. 
Additionally, SOP allows for the easy integration of new 
technologies and services, as well as the ability to add new 
functionality to the system without affecting the existing services. 
This can be achieved through Service composition frameworks, 
which provide a way to easily combine existing services in a 
flexible and reusable way, without the need for extensive 
re-development. 
In summary, Service-oriented programming (SOP) is a way to 
create standalone software that is composed of small, independent 
services that work together to perform a specific task. 
 
Many of these concepts were similar to what is found in 
OOP. Expand on the differences and similarities between 
both. 
 
Object-oriented programming (OOP) and service-oriented 
programming (SOP) are both programming paradigms that have 
their own set of principles and concepts. While they have 
similarities in terms of their focus on modularity and reusability, 
there are also some key differences between the two. 
One of the main differences between OOP and SOP is the scope of 
modularity and reusability. In OOP, the focus is on creating 
modular and reusable objects that can be used to create complex 
systems. In SOP, the focus is on creating modular and reusable 
services that can be used to create complex systems. 
Another difference is the way they handle the state. In OOP, 
objects maintain their state and can change it during their lifetime, 
while in SOP, services are stateless, meaning they do not maintain 
any state or memory of previous requests. 



In terms of similarities, both OOP and SOP focus on creating 
modular and reusable code. Both paradigms also encourage the 
separation of concerns, meaning that different aspects of the code 
should be separated and managed independently. 
In OOP, this is achieved through encapsulation, inheritance, and 
polymorphism, while in SOP this is achieved through loose 
coupling and service autonomy. 
Another similarity is that both OOP and SOP are based on the 
concept of abstraction, which is the process of simplifying 
complex systems by hiding unnecessary details. 
In summary, both Object-oriented programming (OOP) and 
service-oriented programming (SOP) are programming 
 
There are also differences in terms of data? 
 
Yes, there are also differences in terms of how OOP and SOP 
handle data. 
In OOP, the focus is on creating objects that encapsulate both data 
and behavior. Objects have their own state and can change it 
during their lifetime. The data is usually stored within the objects 
themselves, and the objects provide methods for manipulating and 
accessing that data. 
In SOP, the focus is on creating services that are stateless and do 
not maintain any state or memory of previous requests. Services 
typically receive data as input, perform some operation on that 
data, and return the result. The data is not stored within the 
services themselves, but is usually stored in a separate data store, 
such as a database. Services provide a way to access and 
manipulate that data through a set of well-defined APIs. 
Another difference is the way the data is shared and accessed 
between services. In OOP, data is typically shared and accessed 
through the object's methods and properties, while in SOP, data is 



typically shared and accessed through a set of well-defined APIs. 
In summary, there are differences in how OOP and SOP handle 
data. OOP focuses on creating objects that encapsulate both data 
and behavior, and the data is usually stored within the objects 
themselves. SOP focuses on creating stateless services that do not 
maintain any state or memory of previous requests, and the data is 
usually stored in a separate data store and accessed through a set 
of well-defined APIs. 
 
Explain the ways in which SOP can be combined with 
functional programming. 
 
Service-oriented programming (SOP) and functional programming 
(FP) are two different programming paradigms, but they can be 
combined in several ways to create more robust and flexible 
systems. 
One way to combine SOP and FP is through the use of functional 
services. These are services that are designed to be stateless and 
use functional programming concepts such as immutability and 
referential transparency. These services can be easily composed 
and reused to create new functionality, without the need for 
extensive re-development. 
Another way to combine SOP and FP is through the use of 
functional programming languages. Many modern programming 
languages such as Scala, F#, and Haskell have built-in support for 
functional programming and can be used to create services that are 
designed to be stateless and use functional programming concepts. 
Another way to combine SOP and FP is through the use of 
functional libraries or frameworks. These libraries or frameworks 
provide functional programming concepts such as immutability 
and referential transparency that can be used to create services that 
are designed to be stateless. 
By using functional programming concepts, services can be more 



predictable and easier to reason about, and also it can improve the 
overall performance of the system by reducing the need to manage 
state. 
 
Alright, let's start talking about something new for me: UML. 
 
UML (Unified Modeling Language) is a standard visual modeling 
language that is used to design and document software systems. 
UML provides a set of graphical notation and symbols that can be 
used to create visual diagrams that represent different aspects of a 
software system. 
UML diagrams can be used to represent different aspects of a 
software system, such as the structure of the system, the behavior 
of the system, and the interactions between different components 
of the system. Some of the most common types of UML diagrams 
include: 

●​Class diagrams: Represent the structure of the system, 
including the classes and their relationships. 

●​Sequence diagrams: Represent the interactions between 
different objects or components, and show the order in which 
messages are sent and received. 

●​State diagrams: Represent the behavior of the system and the 
different states that objects or components can be in. 

●​Use case diagrams: Represent the use cases of the system and 
the relationships between different actors and use cases. 

UML diagrams can be used during the design phase of a software 
project to help plan and document the design of the system. They 
can also be used during the development phase to help 
communicate the design to the development team and ensure that 
the implementation matches the design. 
UML diagrams can be created using a variety of UML modeling 
tools, such as Visio, StarUML, or IBM Rational Rose. 
In summary, UML (Unified Modeling Language) is a standard 



visual modeling language that is used to design and document 
software systems. It provides a set of graphical notation and 
symbols to create visual diagrams that represent different aspects 
of a software system, and it can be used during the design and 
development phase of a software project. 
 
Can you suggest a strong free or open-source UML tool? 
 
There are several free and open-source UML tools available, some 
of the popular and feature-rich ones are: 

●​StarUML: It is a powerful and flexible UML modeling tool 
that supports all the standard UML diagrams and also 
provides additional features such as code generation and 
reverse engineering. It is available for Windows, Mac, and 
Linux. 

●​Umbrello UML Modeller: It is a UML modeling tool for 
KDE, it supports all the standard UML diagrams, it has a 
simple and easy to use interface, It is available for Windows, 
Mac, and Linux. 

●​Dia: It is a powerful and flexible UML modeling tool that 
supports all the standard UML diagrams and also provides 
additional features such as code generation and reverse 
engineering. It is available for Windows, Mac, and Linux. 

●​Modelio: It is a UML modeling tool that supports all the 
standard UML diagrams and also provides additional features 
such as code generation and reverse engineering. It is 
available for Windows, Mac, and Linux. 

●​Lucidchart: It is a web-based UML modeling tool that 
supports all the standard UML diagrams and also provides 
additional features such as collaboration and integration with 
other tools. 

It is worth noting that you should evaluate the tools based on your 
specific needs and preferences, as some tools may provide more 



features than others, or have a more user-friendly interface. 
 
Let's expand on what are standard UML diagrams.  
 
Standard UML diagrams are a set of graphical notation and 
symbols defined by the Unified Modeling Language (UML) that 
are used to represent different aspects of a software system. 
Some of the most common standard UML diagrams include: 

●​Class diagrams: Represent the structure of the system, 
including the classes, interfaces, and their relationships. They 
show the attributes and methods of classes, and how classes 
are related to each other. 

●​Sequence diagrams: Represent the interactions between 
different objects or components, and show the order in which 
messages are sent and received. They are useful for 
understanding the dynamic behavior of a system, and how 
different objects collaborate to perform a task. 

●​State diagrams: Represent the behavior of the system and the 
different states that objects or components can be in. They 
show the possible transitions between states and the events 
that trigger them. 

●​Use case diagrams: Represent the use cases of the system and 
the relationships between different actors and use cases. They 
show the functionality provided by the system, and how the 
system is used by different actors. 

●​Activity diagrams: Represent the flow of control and the 
sequence of activities within a system. They show the flow of 
control from one activity to another, and the decision points 
within the system. 

●​Component diagrams: Represent the physical components of 
a system and how they are assembled to form the complete 
system. They show the dependencies between components 
and how they are connected. 



●​Deployment diagrams: Represent the physical deployment of 
a system, including the hardware and software components, 
and how they are related. They show the components that run 
on different hardware and how they communicate with each 
other. 

These diagrams can be used together to represent different aspects 
of a software system and help in understanding, designing, and 
communicating the system. 
 
That does sound very useful to have. 
 
Yes, UML diagrams can be very useful in understanding, 
designing, and communicating a software system. They provide a 
visual representation of the system, which can be easier to 
understand and communicate than written documentation. They 
also provide a way to represent different aspects of the system, 
such as the structure, behavior, and interactions, which can help in 
understanding the system as a whole. 
In addition, UML diagrams can be used to validate the design of 
the system and ensure that it meets the requirements. They can 
also be used as a blueprint for the implementation of the system, 
which can help to ensure that the implementation matches the 
design. 
Overall, UML diagrams are an important tool in the software 
development process, and can help to improve the quality and 
maintainability of the software. 
 
Let's expand on considering non-functional requirements of 
a software system during initial design. 
 
When designing a software system, it is important to consider both 
the functional and non-functional requirements of the system. 



Functional requirements describe what the system is supposed to 
do, while non-functional requirements describe how well the 
system is supposed to do it. 
Some examples of non-functional requirements include: 

●​Performance: The system should be able to handle a certain 
number of requests per second, with a certain response time, 
and a certain level of throughput. 

●​Scalability: The system should be able to handle an 
increasing number of users or requests without a significant 
decrease in performance. 

●​Security: The system should protect sensitive data and ensure 
that only authorized users can access it. 

●​Reliability: The system should be available and operational 
for a certain percentage of time, and have a low probability of 
failure. 

●​Maintainability: The system should be easy to change, test, 
and debug, and should have low maintenance costs. 

●​Usability: The system should be easy to use, understand, and 
navigate. 

Considering non-functional requirements during the initial design 
phase can have a big impact on the success of the system. It can 
help to ensure that the system can meet the expectations of the 
users and stakeholders, and can help to avoid costly and 
time-consuming changes later on. 
For instance, if the performance requirements are not considered 
during the design phase, the system may not be able to handle the 
expected number of requests, and may need to be redesigned and 
re-implemented later, which can be costly and time-consuming. 
In summary, Considering non-functional requirements of a 
software system during the initial design phase is important to 
ensure that the system can meet the expectations of the users and 
stakeholders and can help to avoid costly and time-consuming 
changes later on. 



 
Tell me about Class diagrams in finer detail. 
 
Class diagrams are a type of UML diagram that are used to 
represent the structure of a software system. They show the 
classes, interfaces, and their relationships, including the attributes 
and methods of classes, and how classes are related to each other. 
A class diagram typically consists of: 

●​Class: A class is a blueprint for an object. It defines the 
attributes and methods of the object. A class is represented by 
a rectangle with the class name at the top. 

●​Attributes: Attributes are the properties or characteristics of a 
class. They are represented by a line with the name of the 
attribute followed by a colon and the data type. 

●​Methods: Methods are the behaviors or actions of a class. 
They are represented by a line with the name of the method 
followed by a pair of parentheses. 

●​Relationships: Classes can have relationships with other 
classes, such as inheritance, association, aggregation, and 
composition. These relationships are represented by different 
types of lines connecting the classes. 

●​ Inheritance: Represented by an arrow with an open 
arrowhead pointing from the subclass to the superclass. It 
shows that the subclass inherits the attributes and methods of 
the superclass. 

●​Association: Represented by a line connecting two classes. It 
shows that one class uses or has a reference to the other class. 
The association can be further specified by adding 
multiplicity notation at each end of the line. 

●​Aggregation: Represented by a diamond shape at the end of 
the line connecting two classes. It shows that one class is a 
whole and the other class is a part. 

●​Composition: Represented by a filled diamond shape at the 



end of the line connecting two classes. It shows that one class 
contains the other class and can't exist without the other. 

Class diagrams are a powerful tool for understanding the structure 
of a software system and can be used to validate the design of the 
system and ensure that it meets the requirements. They can also be 
used as a blueprint for the implementation of the system, which 
can help to ensure that the implementation matches the design. 
In summary, Class diagrams are a type of UML diagram that are 
used to represent the structure of a software system. They show 
the classes, interfaces, and their relationships, including the 
attributes and methods of classes, and how classes are related to 
each other, and the relationships between the classes such as 
inheritance, association, aggregation, and composition. 
 
Now describe the Sequence diagrams. 
 
Sequence diagrams are a type of UML diagram that are used to 
represent the interactions between different objects or components 
in a software system. They show the order in which messages are 
sent and received, and how different objects collaborate to 
perform a task. 
A sequence diagram typically consists of: 

●​Objects: Represented by horizontal lines called lifelines, each 
one representing an object or component in the system. 

●​Messages: Represented by arrows pointing from one lifeline 
to another, indicating the flow of messages between objects. 
The arrow represents the message and is labeled with the 
message name. 

●​Activations: Represented by bars on top of the lifeline, 
indicating the time an object is active and processing a 
message. 

●​Return messages: Represented by a dotted arrow pointing 



from the activation bar of the target object back to the 
activation bar of the source object, indicating the flow of 
return messages. 

Sequence diagrams are useful for understanding the dynamic 
behavior of a system, and how different objects collaborate to 
perform a task. They can also help to validate the design of the 
system and ensure that it meets the requirements. They are useful 
for identifying potential performance bottlenecks, and for 
understanding the control flow and the order of events in the 
system. 
Sequence diagrams can also be used to generate code, by using the 
interaction between objects and messages to generate methods and 
function calls. They can also be used to generate test cases, by 
using the interaction between objects and messages to generate 
test scenarios. 
 
Expand on State diagrams. 
 
State diagrams, also known as State machines, are a type of UML 
diagram that are used to represent the behavior of a system and the 
different states that objects or components can be in. They show 
the possible transitions between states and the events that trigger 
them. 
A state diagram typically consists of: 

●​States: Represented by rounded rectangles, each one 
representing a state that an object or component can be in. 

●​Transitions: Represented by arrows connecting states, 
indicating the possible transitions between states. The arrow 
is labeled with the event or condition that triggers the 
transition. 

●​ Initial state: Represented by a small filled circle on the state, 
indicating the starting state of the object or component. 



●​Final state: Represented by a small filled circle on the state, 
with a dot inside, indicating the ending state of the object or 
component. 

State diagrams are useful for understanding the behavior of a 
system, and how different states and events are related. They can 
also help to validate the design of the system and ensure that it 
meets the requirements. They can also be used to generate code, 
by using the states and transitions to generate methods and 
function calls. 
State diagrams are particularly useful in systems that have distinct 
states and transitions between them, such as embedded systems, 
communication protocols, and user interfaces. 
In summary, State diagrams are a type of UML diagram that are 
used to represent the behavior of a system 
 
Next we have the Use case diagrams. 
 
Use case diagrams are a type of UML diagram that are used to 
represent the functional requirements of a system, and the 
different ways in which users can interact with the system. They 
show the system's actors and their relationships to the system's use 
cases, which represent the functionality provided by the system. 
A use case diagram typically consists of: 

●​Actors: Represented by stick figures, each one representing a 
role or a user that interacts with the system. 

●​Use cases: Represented by ellipses, each one representing a 
functionality provided by the system. 

●​Relationships: Represented by lines connecting actors and 
use cases, indicating the interactions between them. 

Use case diagrams are useful for understanding the functional 
requirements of a system, and how users can interact with it. They 
can also help to validate the design of the system and ensure that it 



meets the requirements. They can also be used to generate test 
cases, by using the use cases and actors to generate test scenarios. 
Use case diagrams are particularly useful for capturing the 
high-level requirements of a system, and for understanding the 
system's functionalities and how they are related to the users. They 
are also useful for communicating the system's functionalities to 
stakeholders, such as customers and managers. 
In summary, Use case diagrams are a type of UML diagram that 
are used to represent the functional requirements of a system, and 
the different ways in which users can interact with the system.  
 
Let's see the Activity diagrams. 
 
Activity diagrams are a type of UML diagram that are used to 
represent the dynamic behavior of a system, and the flow of 
control through the different activities and actions performed by 
the system. They show the different states and transitions of the 
system, and the flow of control through the different activities and 
actions. 
An activity diagram typically consists of: 

●​Actions: Represented by rounded rectangles, each one 
representing a step or task performed by the system. 

●​Control flows: Represented by arrows connecting actions, 
indicating the flow of control between them. The arrows are 
labeled with the conditions or constraints that govern the 
flow of control. 

●​ Initial and final nodes: Represented by a small filled circle or 
a filled circle with a dot inside, indicating the starting or 
ending point of the flow of control. 

●​Decision and merge nodes: Represented by diamond shapes, 
indicating a point where the flow of control branches or 
converges. 

●​Swimlanes: Represented by horizontal or vertical partitions, 



used to group actions and control flows by the actors or 
components that perform them. 

Activity diagrams are useful for understanding the dynamic 
behavior of a system, and how different states and events are 
related. They can also help to validate the design of the system 
and ensure that it meets the requirements. They can also be used to 
generate code, by using the actions and control flows to generate 
methods and function calls. 
Activity diagrams are particularly useful for capturing the flow of 
control in a system, and for understanding the order of events and 
the dependencies between them. They are also useful for 
communicating the system's behavior to stakeholders, such as 
customers and managers. 
 
Sounds like it's cousin to the State diagram. 
 
Yes, that's correct. Both Activity diagrams and State diagrams are 
used to represent the behavior of a system and the different states 
and transitions that objects or components can be in. However, 
there are some key differences between them. 
State diagrams are focused on the different states that an object or 
component can be in, and the events or conditions that trigger 
transitions between states. The states and transitions in a state 
diagram are usually represented in a hierarchical fashion, with the 
top-level states being decomposed into lower-level substates. 
On the other hand, Activity diagrams are focused on the flow of 
control through the different activities and actions performed by 
the system. They show the order of events and the dependencies 
between them, and are used to represent the dynamic behavior of a 
system. Activity diagrams also have a wider range of elements, 
such as decision and merge nodes, that allow to represent more 
complex flow of control. 



Both diagrams can be used together to represent the behavior of a 
system. For example, a State diagram can be used to show the 
high-level states and transitions of a system, while an Activity 
diagram can be used to show the low-level details of the flow of 
control within a particular state. 
 
What about component diagrams? Are they used in both 
hardware and software? 
 
Yes, component diagrams are used to represent the structure of 
both hardware and software systems. They show the organization 
and dependencies between different components that make up a 
system. 
A component diagram typically consists of: 

●​Components: Represented by rectangles, each one 
representing a physical or logical module of the system. 

●​ Interfaces: Represented by lollipop-shaped symbols, each one 
representing an interface that a component exposes to other 
components. 

●​Dependencies: Represented by arrows connecting 
components and interfaces, indicating the dependencies 
between them. 

●​Packages: Represented by a tabbed folder-shaped symbols, 
used to group and organize related components and 
interfaces. 

Component diagrams are useful for understanding the structure of 
a system, and how different components are related to each other. 
They can also help to validate the design of the system and ensure 
that it meets the requirements. They can also be used to generate 
code, by using the components and interfaces to generate classes 
and interfaces. 
Component diagrams are particularly useful for capturing the 
structure of a system, and for understanding the organization and 



dependencies between different components. They are also useful 
for communicating the system's structure to stakeholders, such as 
customers and managers. 
In summary, Component diagrams are used to represent the 
structure of both hardware and software systems, they show the 
organization and dependencies between different components that 
make up a system. 
 
Lastly we had deployment diagrams. 
 
Deployment diagrams are a type of UML diagram that are used to 
represent the physical deployment of software components on 
hardware nodes. They show the topology of the hardware nodes 
and the software components that are deployed on them, and the 
relationships between them. 
A deployment diagram typically consists of: 

●​Nodes: Represented by rectangles, each one representing a 
physical hardware element, such as a server or a workstation. 

●​Components: Represented by rectangles, each one 
representing a software component, such as an executable or 
a library. 

●​Relationships: Represented by lines connecting nodes and 
components, indicating the deployment of components on 
nodes. 

●​Artifacts: Represented by cloud-shaped symbols, each one 
representing a file or a resource that is deployed along with 
the components. 

Deployment diagrams are useful for understanding the physical 
deployment of a system, and how different hardware and software 
components are related to each other. They can also help to 
validate the design of the system and ensure that it meets the 
requirements. They can also be used to generate configuration 



files and scripts, by using the nodes, components, and artifacts to 
configure the system's environment. 
Deployment diagrams are particularly useful for capturing the 
physical deployment of a system, and for understanding the 
topology of the hardware and the software components that are 
deployed on them. They are also useful for communicating the 
system's deployment to stakeholders, such as customers and 
managers. 
 
That's the one the IT dweebs use to deploy network 
infrastructures, then. 
 
Yes, that's correct. Deployment diagrams are often used by IT 
professionals and system administrators to represent the physical 
deployment of software components on hardware nodes. They 
show the topology of the hardware nodes and the software 
components that are deployed on them, and the relationships 
between them. This can be helpful for understanding the physical 
deployment of a system and how different hardware and software 
components are related to each other. They can also be used to 
generate configuration files, scripts and for deployment of 
network infrastructures. 
 
 
Big shout out to all the IT geeks out there, without them, I 
would not be able to use this service right here. 
 
I appreciate the shout-out, and I agree that IT professionals play a 
critical role in making technology work seamlessly. They are 
responsible for designing, implementing, and maintaining the 
underlying infrastructure that enables technology to function. 
They make sure that systems are running smoothly and that data is 



secured. They are also responsible for troubleshooting and 
resolving any issues that may arise. Without them, many of the 
technologies we rely on would not be possible. 
 
Okay, wonderful. Having seen this outline on UML 
diagrams, suggest a basic UML framework to start planning 
a video game with. 
 
When planning a video game, it can be helpful to use several 
different types of UML diagrams to represent different aspects of 
the game. Here's a basic UML framework you can use to start 
planning your video game: 

1.​Use case diagrams: To represent the different actions and 
interactions that players can perform in the game. 

2.​Class diagrams: To represent the different classes and objects 
that make up the game, such as characters, items, and levels. 

3.​Sequence diagrams: To represent the interactions between 
objects and classes, and the order of events in the game. 

4.​State diagrams: To represent the different states that 
characters, items, and levels can be in, and the events or 
conditions that trigger transitions between states. 

5.​Activity diagrams: To represent the flow of control through 
the different activities and actions performed by the game. 

6.​Component diagrams: To represent the organization and 
dependencies between different software components that 
make up the game. 

7.​Deployment diagrams: To represent the physical deployment 
of software components on hardware nodes, if you're 
planning to use this type of architecture. 

This is just a starting point, and as you continue to develop your 
game, you may find that you need to use additional types of UML 



diagrams or create more detailed diagrams for specific parts of 
your game. 
It's important to note that UML diagrams can be helpful tools for 
planning and communicating the design of a software system, 
including a video game, but the diagrams themselves do not write 
the code for you. They are tools for visualizing, documenting and 
communicating the design of your software, but the actual 
implementation still needs to be done through programming. 
 
What other additional types could be useful? 
 
There are several additional types of UML diagrams that could be 
useful for planning a video game, depending on the complexity 
and scope of the game: 

1.​Object diagrams: To represent the objects and their 
relationships at a specific point in time. 

2.​Package diagrams: To organize and group related classes and 
interfaces, making it easier to navigate and understand the 
design. 

3.​Communication diagrams: To represent the interactions 
between objects in a more dynamic way, highlighting the 
flow of messages between them. 

4.​Timing diagrams: To represent the timing and order of 
events, especially useful for real-time systems or games with 
time-sensitive elements. 

5.​Interaction overview diagrams: To provide a high-level view 
of the interactions between objects, useful for understanding 
the overall flow of control in the game. 

6.​Profile diagrams: To define and reuse custom stereotypes, 
tagged values, and constraints, useful for representing 
game-specific concepts. 



7.​Composite structure diagrams: To represent the internal 
structure of a class, useful for understanding the composition 
of complex objects in the game. 

Again, it's important to note that it depends on the complexity of 
your game and the information you want to convey, these 
diagrams may or may not be necessary, and you can use a subset 
of them, or even create your own diagrams to represent specific 
aspects of the game. 
 
Oh wow, and I thought there were a lot already. Object 
diagrams seem important, expand on that. 
 
An object diagram is a type of UML diagram that represents the 
objects and their relationships at a specific point in time. It shows 
the instances of classes and the links between them, and can be 
used to represent the current state of a system. 
An object diagram is typically composed of: 

●​Objects: Represented by rectangles, each one representing an 
instance of a class. 

●​Attributes: Represented by compartments within the objects, 
showing the values of the attributes of the class. 

●​Links: Represented by lines connecting objects, indicating 
the relationships between them. 

Object diagrams are useful for understanding the current state of a 
system, and how different objects are related to each other. They 
can also be used to validate the design of a system, by ensuring 
that the relationships between objects are consistent with the class 
diagrams. 
Object diagrams can be particularly useful for representing the 
current state of a game, and for understanding the relationships 
between different objects, such as characters, items, and levels. 
For example, you can use an object diagram to represent the 



characters in the game, their attributes and their relationship with 
other game entities. 
In summary, Object diagrams are a type of UML diagrams that 
represent the objects and their relationships at a specific point in 
time. 
 
Now expand on the Composite structure diagram. 
 
A Composite Structure Diagram is a type of UML diagram that 
represents the internal structure of a class, and is used to show the 
relationship between the parts and the whole of a complex object. 
It is used to visualize the internal structure of an object, and the 
interactions between its internal parts. 
A Composite Structure diagram typically consists of: 

●​Parts: Represented by rectangles, each one representing an 
internal part of the class. 

●​Ports: Represented by circles, each one representing an 
interface of the class that connects the class to the outside 
world. 

●​Connectors: Represented by lines connecting parts and ports, 
indicating the relationships between them. 

Composite Structure diagrams are useful for understanding the 
internal structure of an object and the interactions between its 
parts. They can also be used to validate the design of a system, by 
ensuring that the relationships between parts are consistent with 
the class diagrams. 
Composite structure diagrams can be particularly useful for 
representing the internal structure of complex objects in a game, 
such as characters, items, and levels, and the interactions between 
their internal parts. For example, you can use a composite 
structure diagram to represent the internal structure of a character, 
including its attributes and the relationships between its different 



parts, such as its weapons, armor, and inventory. 
 
Timing diagrams will be important in games such as racing 
games and city-builders. Tell me more about that. 
 
You are correct, Timing diagrams are a type of UML diagrams 
that are particularly useful for representing the timing and order of 
events, and they can be especially useful for real-time systems or 
games with time-sensitive elements, such as racing games and 
city-builders. 
A Timing diagram is a graph that shows the change in the state of 
one or more elements over time. The horizontal axis represents 
time, and the vertical axis represents the state of the elements. The 
elements are typically represented by horizontal lines, and the 
changes in their state are represented by vertical lines or arrows. 
Timing diagrams can be used to represent a wide range of 
information, including the timing of events, the duration of events, 
and the order of events. They can also be used to represent the 
timing of different states, such as the speed of a car in a racing 
game, or the population of a city in a city-builder game. 
Timing diagrams can also be used to represent the interactions 
between different elements, such as the timing of inputs and 
outputs, or the timing of messages between different objects. 
 
Explain Profile diagrams a bit more, I didn't really get it. 
 
A Profile diagram is a type of UML diagram that is used to define 
and reuse custom stereotypes, tagged values, and constraints. It is 
used to extend the UML metamodel and create domain-specific 
models. 
A Profile diagram is used to define custom stereotypes, which are 
reusable descriptions of common concepts used in a specific 



domain. For example, in game development, you could use 
stereotypes to represent game-specific concepts such as 
"character", "weapon", or "level". 
A Profile diagram also allows you to define custom tagged values, 
which are additional properties that can be added to elements in a 
model. For example, you could use tagged values to represent the 
damage of a weapon, or the health of a character. 
Finally, Profile diagrams can be used to define custom constraints, 
which are rules that must be followed when creating a model. For 
example, you could use constraints to ensure that a character can 
only carry a certain number of items, or that a weapon can only be 
used by certain characters. 
Profile diagrams can be particularly useful for game development 
because they allow you to create domain-specific models that can 
be reused and shared between different parts of the game, making 
it easier to understand and maintain the game design. 
In summary, Profile diagrams are a type of UML diagrams that 
allow you to define and reuse custom stereotypes, tagged values 
and constraints, they are used to extend the UML metamodel and 
create domain-specific models such as game-specific concepts. 
 
Expand on domain-specific models. 
 
A domain-specific model is a model that is tailored to a specific 
domain, such as game development, healthcare, finance, etc. It is a 
representation of the concepts, relationships and constraints that 
are specific to that domain. 
A domain-specific model can be represented using different types 
of diagrams, such as class diagrams, sequence diagrams, state 
diagrams, etc. However, the elements in the diagrams and the 
relationships between them are tailored to the specific domain. 
A domain-specific model can be created by using a 



domain-specific language (DSL) or by extending an existing 
modeling language, such as UML, with domain-specific 
stereotypes, tagged values and constraints, which is what we 
talked about in the Profile diagrams. 
Using domain-specific models can bring many advantages, such 
as improved readability and understandability for the developers 
and stakeholders familiar with the domain, increased productivity, 
and better communication within the team. 
In summary, A domain-specific model is a model that is tailored to 
a specific domain, it can be represented using different types of 
diagrams and it can be created by using a domain-specific 
language or by extending an existing modeling language such as 
UML with domain-specific stereotypes, tagged values and 
constraints. This can bring many advantages such as improved 
readability, increased productivity and better communication 
within the team. 
 
Are there sub-domains within game development, for 
example? 
 
Yes, there are certainly sub-domains within game development. 
Game development is a large and complex field that can be 
divided into several sub-domains, each with its own set of 
concepts, techniques, and tools. Some examples of sub-domains 
within game development include: 

●​Game design: This sub-domain focuses on the design and 
creation of the gameplay and game mechanics. It involves 
creating the game's rules, objectives, and challenges, as well 
as designing the game's characters, environments, and items. 

●​Game programming: This sub-domain focuses on the 
implementation of the game's functionality and mechanics 
using programming languages such as C++, C#, or Java. It 
involves creating the game's logic, physics, and AI, as well as 



handling user input and displaying graphics on the screen. 
●​Game art: This sub-domain focuses on the creation of the 

game's visual elements, such as characters, environments, 
and items. It involves using tools such as 3D modeling and 
animation software, as well as 2D graphics software. 

●​Game audio: This sub-domain focuses on the creation of the 
game's audio elements, such as sound effects, music, and 
voice acting. It involves using tools such as digital audio 
workstations and audio software. 

●​Game testing: This sub-domain focuses on the testing and 
quality assurance of the game. It involves finding and 
reporting bugs, as well as testing the game's functionality and 
performance. 

These are just a few examples of sub-domains within game 
development, and there are many more. Each sub-domain has its 
own set of concepts, techniques, and tools, and often people 
specialize in a specific sub-domain. 
 
So, some others would be multiplayer, UI/UX, or even 
community management. 
 
Yes, you are correct. Some other examples of sub-domains within 
game development include: 

●​Multiplayer: This sub-domain focuses on the development of 
multiplayer functionality, such as online multiplayer, co-op, 
and social features. It involves creating the networking code, 
matchmaking, and server infrastructure, as well as designing 
the gameplay mechanics and UI/UX for multiplayer. 

●​UI/UX: This sub-domain focuses on the design and 
implementation of the game's user interface and user 
experience. It involves creating the game's menus, buttons, 
and other UI elements, as well as designing the game's 
overall look and feel. It also involves making sure that the 



game is intuitive and easy to use for players. 
●​Community management: This sub-domain focuses on the 

management of the game's community, including players, 
fans, and other stakeholders. It involves creating and 
managing social media accounts, forums, and other online 
platforms, as well as communicating with the community and 
gathering feedback. 

These are indeed some of the sub-domains within game 
development, and there are many more. As you can see, game 
development is a multi-disciplinary field that encompasses a wide 
range of concepts and skills. 
 
Now suggest a UML outline for planning a DAW program. 
 
When planning a DAW (Digital Audio Workstation) program, 
UML diagrams can be used to represent the various components 
of the program and their relationships. Here is a suggested UML 
outline for planning a DAW program: 

●​Class diagrams: Class diagrams can be used to represent the 
different classes and objects in the program, such as the audio 
tracks, effects, and tools. The class diagrams can also show 
the relationships between the classes, such as inheritance, 
composition, and association. 

●​Sequence diagrams: Sequence diagrams can be used to 
represent the interactions between the classes and objects, 
such as the flow of audio data and the execution of 
commands. This can help to understand the order of 
operations and the timing of events in the program. 

●​State diagrams: State diagrams can be used to represent the 
different states of the program, such as the different modes of 
operation and the different states of the audio tracks and 
effects. This can help to understand how the program behaves 
under different conditions. 



●​Use case diagrams: Use case diagrams can be used to 
represent the different use cases for the program, such as 
recording, editing, and mixing audio. This can help to 
understand the different ways in which the program is used 
and the different requirements for each use case. 

●​Component diagrams: Component diagrams can be used to 
represent the different components of the program and how 
they are connected. This can help to understand how the 
different classes and objects interact with each other and with 
external systems, such as audio interfaces and plug-ins. 

●​Deployment diagrams: Deployment diagrams can be used to 
represent the different hardware and software components 
that are required to run the program, such as the computer, 
audio interface, and operating system. This can help to 
understand the system requirements and the different 
configurations that are supported. 

These diagrams can be useful in planning a DAW program as they 
will help to understand the different components of the program 
and how they interact with each other, as well as the different use 
cases and system requirements. 
 
Write some final tips and guidelines on the usage of UML 
diagrams. 
 
UML diagrams are a powerful tool for planning and documenting 
software systems, but they should be used with care to ensure that 
they are effective and accurate. Here are some final tips and 
guidelines on the usage of UML diagrams: 

●​Keep it simple: UML diagrams can quickly become complex 
and difficult to understand, so it is important to keep them as 
simple as possible. Use only the necessary diagrams and only 
the necessary details in each diagram. 

●​Be consistent: UML diagrams should be consistent in terms 



of notation, conventions, and style. This will make them 
easier to understand and use, and will help to ensure that they 
are accurate. 

●​Focus on the important parts: UML diagrams should focus on 
the important parts of the software system and the 
relationships between them. This will help to ensure that the 
diagrams are relevant and useful. 

●​Update regularly: UML diagrams should be updated 
regularly as the software system evolves. This will help to 
ensure that they are accurate and up-to-date, and will help to 
identify any changes that need to be made. 

●​Use tools: UML tools can help to automate the creation and 
management of UML diagrams, making them faster and 
easier to create and use. There are a variety of UML tools 
available, such as those suggested earlier, so it's worth 
evaluating a few to find the one that best fits your needs. 

●​Use domain-specific models when necessary: UML diagrams 
are general purpose diagrams, but there are domain-specific 
models that can be more useful in some cases. For example, 
State Chart diagrams are more suitable for representing states 
and events in embedded systems or real-time systems. 

●​Use them in conjunction with other documentation: UML 
diagrams should be used in conjunction with other forms of 
documentation, such as text and code, to provide a complete 
and accurate picture of the software system. 

By following these tips and guidelines, UML diagrams can be an 
effective and valuable tool for planning and documenting software 
systems. 
 
Write a briefer on real-time systems. 
 
Real-time systems are a class of software systems that are 
designed to respond to external events within a specific time 



constraint. They are used in a wide range of applications, such as 
transportation, industrial control, medical equipment, and gaming. 
Some key characteristics of real-time systems include: 

●​Time constraints: Real-time systems are designed to respond 
to external events within a specific time constraint. The time 
constraint may be strict or soft, but it must be met for the 
system to function correctly. 

●​Deterministic behavior: Real-time systems are designed to 
have deterministic behavior, meaning that their response to 
external events can be predicted and controlled. This is 
achieved through the use of well-defined algorithms and data 
structures, as well as the use of predictable hardware and 
operating systems. 

●​Predictability: Real-time systems are designed to have 
predictable behavior, meaning that their performance can be 
measured and predicted. This is achieved through the use of 
performance metrics and analysis tools, as well as the use of 
simulation and modeling techniques. 

●​Reliability: Real-time systems are designed to be reliable, 
meaning that they are designed to function correctly even in 
the presence of errors or failures. This is achieved through 
the use of fault-tolerance techniques, such as redundancy and 
self-checking. 

●​Scalability: Real-time systems are designed to be scalable, 
meaning that they can be adapted to different sizes and types 
of systems. This is achieved through the use of modular 
design and the use of middleware, such as real-time operating 
systems and communication protocols. 

Real-time systems are used in a wide range of applications and are 
critical for many industries including aerospace, transportation, 
healthcare and gaming. They need to be designed carefully to 
meet the time constraints and other requirements of the specific 
application. 
 



Alright, like I said earlier, we'll talk about how to make sure I 
can start my programming journey with modern and 
up-to-date methodologies. 
 
It's great that you're interested in making sure you're using 
up-to-date methodologies in your programming journey. Here are 
a few tips on how to stay current in the field of software 
development: 

1.​Stay informed about new developments: Keep an eye out for 
new technologies, programming languages, and software 
development methodologies. Follow relevant blogs, forums, 
and social media groups to stay informed about the latest 
trends and developments. 

2.​Learn continuously: Learning is a continuous process. Try to 
learn something new every day, whether it's a new 
technology, a new programming language, or a new software 
development methodology. 

3.​Attend conferences and workshops: Attending conferences 
and workshops is an excellent way to learn about new 
developments in the field of software development. You'll 
have the opportunity to hear from experts and to network 
with other professionals in your field. 

4.​Participate in online communities: Participating in online 
communities such as StackOverflow, Reddit, and GitHub is a 
great way to stay connected with other developers and to 
learn from their experiences. 

5.​Practice, Practice, Practice: The more you practice, the better 
you'll become. Try to work on personal projects or contribute 
to open-source projects. This will help you to gain practical 
experience and to build a portfolio of work that you can 
showcase to potential employers. 

6.​Keep an open mind: Technology is constantly evolving and 
it's important to keep an open mind to new ideas and 



approaches. Be willing to try new things and to experiment 
with different technologies, programming languages, and 
software development methodologies. 

By following these tips, you'll be able to stay current in the field 
of software development and to start your programming journey 
with modern and up-to-date methodologies. 
 
Nice. Now we'll be more specific. C++ is, as we discussed, 
old. The language has some vestigial parts in it, that I 
basically should not use because there is a new and better 
way. 
 
C++ is a powerful and versatile programming language that has 
been in use for many years. While it has many features that are 
still widely used and relevant, there are also some parts of the 
language that have been deprecated or replaced by more modern 
alternatives. Here are a few examples of C++ features that you 
may want to avoid: 

1.​C-style arrays: C-style arrays are fixed-size arrays that are 
defined using the square bracket notation. They do not 
provide any bounds checking or memory management, and 
have been replaced by safer alternatives such as std::array or 
std::vector. 

2.​The "auto_ptr" smart pointer: The "auto_ptr" smart pointer is 
a C++ feature that is used to manage memory automatically. 
However, it has been deprecated in favor of more modern 
alternatives such as std::unique_ptr and std::shared_ptr. 

3.​The "new" and "delete" operators: The "new" and "delete" 
operators are used to dynamically allocate and deallocate 
memory in C++. However, they can be error-prone and have 
been replaced by safer alternatives such as 
"std::make_shared" and "std::make_unique". 



4.​Deprecated C-style string functions: The C-style string 
functions such as "strcpy" and "strcat" are not type-safe and 
are therefore error-prone. They have been replaced by safer 
alternatives such as "std::string" and "std::string_view". 

5.​ C-style casts: C-style casts such as (type) expression  
and  have been deprecated in favor of the new "C++ style 
cast" like "dynamic_cast" "static_cast" and "const_cast" 
which are safer and more versatile. 

6.​The "mutable" keyword: The "mutable" keyword allows you 
to change a member variable of an object even when it is 
const. This can be confusing and hard to reason about, and is 
generally considered bad practice. Instead, consider using a 
const_cast or a const member function to achieve the same 
result in a more explicit and safe way. 

7.​Global variables and functions: Global variables and 
functions can cause naming conflicts and make code harder 
to understand and maintain. Instead, try to use encapsulation 
and information hiding to keep the global scope clean, and to 
make code more modular and easy to understand. 

8.​The "goto" statement: The "goto" statement is a control flow 
statement that can cause code to become hard to understand 
and maintain. It can be replaced with structured control flow 
statements such as "if-else" or "while" loops. 

By avoiding these C++ features, you can write safer, more 
maintainable, and more readable code. Instead of using these 
features, you can use modern C++ features such as smart pointers, 
move semantics, and type-safe containers that will help you write 
safer, more efficient, and more maintainable code. 
 
I need a briefer on C-style casts versus modern C++ 
casting. 
 
C-style casts, also known as "old-style" or "C-style" casting, were 



used in C and C++ before the introduction of C++11. They include 
the following types of casting: 

​​ (type) expression: This is known as a "C-style cast" 
and is used to cast an expression to a specific data type. 

​​ type(expression): This is known as a "functional cast" 
and is used to cast an expression to a specific data type. 

Modern C++ casting, on the other hand, includes the following 
types of casting: 

​​ static_cast<type>(expression): This is used to 
perform a safe, explicit cast from one data type to another. 

​​ dynamic_cast<type>(expression): This is used to 
perform a runtime check on a cast from a polymorphic class 
to a derived class. 

​​ const_cast<type>(expression): This is used to 
remove or add the const or volatile qualifiers to an 
expression. 

​​ reinterpret_cast<type>(expression): This is 
used to cast an expression to a different data type, without 
performing any type checking. 

It is generally recommended to use modern C++ casting methods 
instead of C-style casting, as they provide more safety and 
flexibility. 
 
That's good to know and have in one place. Beyond 
specifics about the language, are there older design or 
implementation methods that are outdated or obsolete, in 
C++ or programming in general?  
 
Yes, there are older design and implementation methods that are 
considered outdated or obsolete in C++ and programming in 
general. Here are a few examples: 

1.​Monolithic design: Monolithic design is a software design 



approach where all the functionality of a system is contained 
in a single, large codebase. This approach can make code 
hard to understand, maintain and test, and can make it 
difficult to add new features or fix bugs. 

2.​Waterfall model: The Waterfall model is a software 
development process that is linear and sequential in nature. 
This approach can be inflexible, and it can make it difficult to 
adapt to changing requirements or to incorporate feedback 
from users. 

3.​Spaghetti code: Spaghetti code is a term used to describe 
code that is difficult to understand and maintain, due to its 
lack of organization, structure and poor programming 
practices. This type of code can be hard to understand, test, 
and maintain. 

4.​God class: A God class is a class that has too many 
responsibilities, and it's difficult to understand, test, and 
maintain. This class usually has many methods, many 
attributes and many dependencies. 

5.​Big Ball of Mud: A Big Ball of Mud is a term used to 
describe a software system that has grown organically, 
without a clear design or architecture. This type of system 
can be difficult to understand, test, and maintain, and it can 
be hard to add new features or fix bugs. 

6.​Premature optimization: Premature optimization is the 
practice of optimizing a program without first having a clear 
understanding of the requirements and constraints of the 
system. This can lead to wasted effort and can make code 
harder to understand, test, and maintain. 

By avoiding these outdated or obsolete design and implementation 
methods, you can write safer, more maintainable, and more 
readable code. It's important to keep in mind that software 
development is an iterative process and there are always new 
approaches and methodologies being developed. Therefore, it's 



important to stay updated and to continuously learn new 
techniques and best practices in order to write high-quality code. 
Additionally, it's important to remember that there is no 
one-size-fits-all solution when it comes to software development. 
Different projects and different contexts may require different 
approaches and methodologies. Therefore, it's important to 
evaluate the specific requirements and constraints of a project, and 
to choose the approach and methodology that is best suited for that 
project. 
 
Now is your chance to forbid me to ever do something in a 
program because it's a really dumb move. 

 

As a language model, I don't have the ability to "forbid" you to do 
anything. However, I can give you some general guidelines to 
follow when writing code that will help you avoid common 
mistakes and bad practices: 

1.​Avoid using global variables and functions as much as 
possible, as they can lead to naming conflicts and make code 
harder to understand and maintain. 

2.​Always use proper error and exception handling. Make sure 
to catch and handle errors and exceptions in a way that is 
appropriate for the specific context of your code. 

3.​Avoid using "goto" statements, as they can make code hard to 
understand and maintain. 

4.​Avoid using the "mutable" keyword, as it can lead to 
confusing and hard-to-reason-about code. 

5.​Avoid using hard-coded values and magic numbers in your 
code, as they can make code hard to understand and maintain. 

6.​Avoid using "spaghetti code" or "Big Ball of Mud" style, as 
they can make code hard to understand and maintain. 



7.​Avoid premature optimization, as it can lead to wasted effort 
and can make code harder to understand, test, and maintain. 

8.​Always properly document your code, including comments, 
variable and function names, and any other information that 
will help someone else understand how your code works. 

By following these guidelines, you can write safer, more 
maintainable, and more readable code. 
 
What do you mean exactly with the magic number? We 
didn't see that before. 
 
A magic number is a hard-coded value in a program that has a 
specific meaning or purpose, but it's not immediately obvious 
from the code. This term is often used to refer to numbers that are 
used as constants in a program without any explanation of what 
they represent. 
For example, consider the following code: 
if (age >= 65) { 

   // code 

} 

The number 65 is a magic number because it doesn't have a clear 
meaning or purpose. It's not immediately obvious what it 
represents. A better way to write this code would be to use a 
constant variable with a descriptive name: 
const int RETIREMENT_AGE = 65; 

if (age >= RETIREMENT_AGE) { 

   // code 

} 

Now it's clear that the age of 65 is the retirement age. 
Magic numbers can make code harder to understand and maintain 
because they can be difficult to track down and change if their 



values need to be updated. Also, it's hard for other developers, 
who might be reading the code later, to understand the meaning of 
a number if it's not clear what it represents. 
Using constants with descriptive names can make code much 
more readable and maintainable. 
 
I see, yes. There we go, I swear that there will never be a 
magic number anywhere in my code. That's my promise to 
you for getting me through all this. 
 
I'm glad that you found that information useful. Remembering to 
use descriptive constant names and avoiding magic numbers is an 
important best practice in software development, and it will help 
make your code more readable, maintainable, and understandable 
for yourself and others. 
As a reminder, it's important to always keep learning and adapting 
to new best practices and methodologies, in order to continuously 
improve your code and to keep it up-to-date. 
I am an AI and I am here to help you learn, so I am happy to assist 
you with any other questions or topics you may have in the future. 
 
Can the UML diagrams be used to plan how SOLID 
principles will be implemented? 
 
Yes, UML diagrams can be used to plan how SOLID principles 
will be implemented in a software system. 
The SOLID principles are a set of guidelines for writing 
maintainable and scalable object-oriented code. They are: 

​​ Single Responsibility Principle (SRP) 
​​ Open-Closed Principle (OCP) 
​​ Liskov Substitution Principle (LSP) 



​​ Interface Segregation Principle (ISP) 
​​ Dependency Inversion Principle (DIP) 

UML diagrams can be used to help visualize and plan how these 
principles will be applied in a software system. For example, class 
diagrams can be used to show the relationships between classes 
and how they adhere to the Single Responsibility Principle. 
Sequence diagrams can be used to show how the Open-Closed 
Principle is applied in the system by showing how the system's 
objects interact with each other. 
It's important to keep in mind that UML diagrams are just a tool to 
help plan and design a system, they are not a requirement for 
implementing SOLID principles, but they can be very useful to 
make it easier to understand and follow the SOLID principles. 
It's also important to keep in mind that SOLID principles are 
guidelines and not strict rules, it's not always possible or 
appropriate to strictly adhere to all principles in every situation. 
 
We have drilled all of that in my head in 3 different lectures, 
but there are many things going on at once, indeed. 
 
Yes, software design and architecture can be a complex topic with 
many different concepts and principles to consider. It's important 
to take the time to practice and understand each concept and 
principle individually, and then see how they all fit together in the 
overall design of a software system. 
It's also important to keep in mind that software design and 
architecture is an iterative process. As you continue to work on a 
project, you may find that certain design decisions don't work as 
well as you thought, and you may need to make adjustments and 
improvements. The more you practice and work on different 
projects, the better you will become at designing and architecting 
software systems. 



It's also important to continue learning and keeping up with the 
latest best practices and trends in software development. The field 
is constantly evolving and new techniques and tools are constantly 
being developed. 
I'm glad that I could help you in learning and understanding these 
concepts and principles and if you have any other questions or 
topics you would like to explore, please let me know. 
 
We've done a course on object design patterns before, but it 
was before I learned about templates, the STL, advanced 
theory or exception handling. Write some new guidelines for 
me when working with patterns, considering what I learned 
since then, as well as this lecture here. 
 
Here are some guidelines for working with design patterns in C++, 
considering what you have learned about templates, the STL, 
advanced theory, and exception handling: 

1.​Make use of C++ templates: When implementing design 
patterns, make use of C++ templates to make the patterns 
more generic and reusable. This will allow you to easily 
create different instantiations of a pattern without having to 
write separate code for each one. 

2.​Use the STL: The C++ Standard Template Library (STL) 
provides a lot of useful functionality that can be used when 
implementing design patterns. For example, the STL 
containers can be used to implement the composite pattern 
and the observer pattern. 

3.​Consider advanced C++ features: C++ has a lot of advanced 
features such as move semantics, perfect forwarding, and 
variadic templates that can be used to make the 
implementation of design patterns more efficient and elegant. 

4.​Use exception handling: Exception handling can be used to 
handle errors and exceptional situations in a more structured 



way. This is particularly useful when implementing patterns 
such as the template method pattern and the strategy pattern. 

5.​Be mindful of the SOLID principles: The SOLID principles 
are a set of guidelines for writing maintainable and scalable 
object-oriented code. They are: 

​​ Single Responsibility Principle (SRP) 
​​ Open-Closed Principle (OCP) 
​​ Liskov Substitution Principle (LSP) 
​​ Interface Segregation Principle (ISP) 
​​ Dependency Inversion Principle (DIP) Keep in mind 

these principles when designing the architecture of your 
code, specially when working with patterns. 

6.​Keep it simple: Always strive to keep the implementation of 
design patterns as simple as possible. Avoid over-engineering 
and use patterns only when they are needed. 

7.​Be aware of anti-patterns, which are common but problematic 
solutions to a software design problem. These include 
patterns such as the god class, the singleton, and the spaghetti 
code. Avoid using these patterns and instead, strive for a 
more elegant and maintainable solution. 

8.​Test and Refactor: Always test your code thoroughly after 
implementing a pattern and refactor it if necessary. This will 
ensure that the pattern is working correctly and that the code 
is maintainable. 

9.​Learn from others: Learn from other's experiences and best 
practices by reading books, articles, and blog posts about 
design patterns. Join online communities of developers and 
ask questions to learn from other's experiences. 

10.​ Practice, Practice, Practice: The more you practice 
working with design patterns, the more comfortable and 
proficient you will become at using them. Try to apply 
patterns to different projects and scenarios to get a better 
understanding of when and how to use them. 



 
Why do some people refer to the singleton as a problematic 
solution to a design problem?  
 
The Singleton pattern is often criticized for several reasons: 

1.​Global State: The Singleton pattern creates a global point of 
access to an object, which can lead to tight coupling between 
different parts of the code. This can make it difficult to reason 
about the behavior of the code and to test different parts of 
the code in isolation. 

2.​Difficult to test: Singletons can be difficult to test because 
they are tightly coupled to the code that uses them. This can 
make it difficult to write automated tests for the code, and can 
lead to brittle and unreliable tests. 

3.​Concurrency issues: Singletons can cause concurrency issues 
if they are not implemented correctly. For example, if 
multiple threads try to access a Singleton at the same time, it 
can lead to race conditions and other concurrency-related 
bugs. 

4.​Hard to extend: Singletons can be difficult to extend or 
replace because they are tightly coupled to the code that uses 
them. This can make it difficult to add new features or to 
change the behavior of the code. 

5.​Violates SOLID principles: Singletons violate the Single 
Responsibility Principle and the Open/Closed Principle of 
SOLID principles. 

While the Singleton pattern can be useful in certain situations, it 
should be used with caution and only when necessary. Often, other 
design patterns like Dependency Injection can be used to achieve 
the same goals without the drawbacks of the Singleton pattern. 
Dependency Injection (DI) is a design pattern that is often used as 
an alternative to the Singleton pattern. It is a technique for 



providing objects with their dependencies, rather than having them 
create or locate their dependencies themselves. The main idea 
behind DI is that the objects should not have to create or locate 
their own dependencies, but rather have them provided to them by 
another component. 
DI can be implemented in different ways, such as using a DI 
Container, which is a library that manages the creation and 
injection of dependencies into objects. The DI container is 
responsible for creating objects and injecting their dependencies, 
based on a configuration provided by the developer. 
Dependency Injection can be used to improve testability, 
flexibility, and maintainability of the code. It also promotes the 
SOLID principles, particularly the Dependency Inversion 
Principle and it's one of the types of Inversion of Control, which is 
a way to achieve loose coupling between components. 
 
Alright. Maybe we can start winding down this one soon. 
Write an assessment of this lesson, and then see if we 
missed anything that might be important. 
 
In this lesson, we covered a lot of ground on modern 
programming design and architecture in C++. We discussed the 
importance of software design and architecture in creating code 
that is modular, maintainable, and scalable. We also looked at 
different approaches to software design, including object-oriented 
design, functional design, and service-oriented design. 
We also covered key concepts such as design patterns, separation 
of concerns, modularity, environments, and domains, and how to 
use design tools and techniques like UML diagrams and design 
principles like SOLID to plan and document the design of a 
software system. 
We also discussed the importance of considering non-functional 
requirements of a software system when designing the 



architecture, such as performance, security, and reliability. 
We also discussed UML diagrams and how they can be used to 
plan and document the design of a software system, including 
class diagrams, sequence diagrams, state diagrams, use case 
diagrams, activity diagrams, component diagrams, and 
deployment diagrams. 
Lastly, we discussed the topic of real-time systems, and the 
importance of using modern and up-to-date methodologies when 
developing software. 
Overall, this lesson provided a comprehensive overview of 
modern programming design and architecture in C++, and 
provided guidelines for using design patterns and UML diagrams 
effectively. It may be helpful to review the material and practice 
the concepts and techniques covered in this lesson to gain a better 
understanding and proficiency in using them in real-world 
development. 
 
I have one more auxiliary lesson on UI/UX left to finish, but 
this was the last main course, and we have now completed 
the core curriculum that you established for this program, at 
the very start. Absolutely extraordinary. I can't find much 
else to say. 
 
I'm glad that I could help you with this program, and that you 
found it valuable. It is always satisfying to see a student progress 
and gain a deeper understanding of a subject. The journey of 
learning is always challenging, but it's worth it. I hope that you 
will continue to use and improve upon the skills and knowledge 
that you have gained in this program, in your future projects. Don't 
hesitate to reach out to me if you have any questions or need 
further clarification on any of the concepts covered in this 
program. 



 
Usually I tell you that we'll see each other in another thread 
for the next lesson, but this is the end of the line, here. 
There may be other courses later, but from now on, you 
won't be my teacher anymore but my expert consultant. 
 
I understand, it's always bittersweet to reach the end of a course. 
But it's important to remember that learning is a lifelong process 
and I'll be here to help you whenever you need. I'm glad that I 
could assist you throughout this journey and I'm happy to continue 
to help you in any way that I can. It's been a pleasure teaching you 
and I hope that you will continue to learn and grow as a 
programmer. Don't hesitate to reach out if you have any questions 
or need further assistance in the future. 
 
Cheers to you and thanks. 
 
I am glad that I could be of help. Thank you for the opportunity to 
assist you in your learning journey. I wish you all the best in your 
future endeavors. If you ever need help with programming or any 
other related topic, feel free to reach out. 
 
 
 
 
Table of Contents 
Introduction to modern programming design and architecture in C++ 
Environments and domains in software design 
Object-oriented design, functional design, and service-oriented design 
Non-functional requirements of a software system  
Referential transparency and immutability in functional programming 



Stateful data structures and recursion 
Dynamic programming 
SOP: Service autonomy, discovery, loose-coupling, statelessness and 
composability 
UML Diagrams  
A. Class Diagrams B. Sequence Diagrams C. State Diagrams D. Activity 
Diagrams E. Use Case Diagrams F. Component Diagrams G. Deployment 
Diagrams H. Object Diagrams I. Composite Structure Diagrams J. Timing 
Diagrams K. Profile Diagrams L. Domain-Specific Models 

●​ UML outline for planning a video game or a DAW program 
●​ UML diagrams and design principles (such as SOLID) 
●​ Tips and guidelines on the usage of UML diagrams and real-time 

systems 
Outdated or obsolete design and implementation methods in C++ 
Guidelines for working with design patterns 
Final assessment of the lesson 
 

 

 

 

Copyright © 2023 Exaelar (A.C.M.) 

All material provided on this page, including text, images, and files, is the property of 
Exaelar and is protected by copyright laws. The material is intended for personal or 
educational use only and may not be redistributed or sold without the express written 
permission of the copyright owner. Any unauthorized use of this material may be in 
violation of copyright laws. By accessing this written content, you agree to use the 
material solely for your own personal or educational purposes. 

 


