Forward Software Design

Project Github Repository: https://github.com/Nivrad00/social-landmines
Setting up Godot environment

Design decisions
Choosing a game engine
Choosing frameworks and using yarn
Working with Rakugo and yarn importer

Choosing not to use dynamic gdscript generation

File System and Structure
Architecture

Decomposition
Modules

Data
Deployment

Setting up Godot environment

Forward was developed on Godot version 3.2.3. Newer versions have not been tested, but
aren’t likely to be compatible.

Step 1: Downloading Godot
Access Godot’'s download page here: htips://godotengine.org/download
Scroll down and click on old godot downloads.

AAR library for Android plugins
(Mono / C#)

Use it to develop Android plugins in Java or Kotlin using the Godot
APL.

Learn Godot

Learning how to use Godot with the Step by Step tutorial.

Demos

Example projects to get you started.

Blender ESCN exporter

Blender add-on to export scenes to Godot's scene format directly.
Godot also supports gITF 2.0 and OBJ.

oOld Godot downloads

Looking for the previous stable releases? They're here!

https://github.com/Nivrad00/social-landmines
https://godotengine.org/download

A list of previous godot versions should pop up. Click on 3.2.3. Depending on your operating
system, download the appropriate zip file.

Index of /godotengine/3.2.3/

Name

Parent Directory/

betals
mono/
rclf
rc2f
rc3/f
rcdf
rcs/
rchSf

Godot_w3.
Godot_v3.
Godot_v3.
Godot_w3.
Godot_v3.
Godot_v3.
Godot_w3.
Godot_v3.
Godot_w3.
Godot_v3.

2.3-stable_changelog_authors.txt
2.3-stable_changelog_chrono.txt

2.3-stable_export_templates.tpz

2.3-stable_linux_headless.64.zip
2.
2
2
2
2
2

3-stable_linux_server.&d.zip

.3-stable_osx.84.zip —
L3-stable_win32.exe.zip
L3-stable_wingd.exe.zip ——
L3-stable_x11.32.zip
3-stable_x11.84.zip

SHAS12-5UMS. txt
godot-3.2.3-stable.tar.xz
godot-3.2.3-stable.tar.xz.sha256
godot-1ib.3.2.3.steble.release, aar

Last Modified

2828-Jul-28
2828-5ep-17
2828-Jul-24
2828-Jul-28
2828-Jul-31
2028-Aug-21
2828-5ep-02
2028-5ep-a9
2828-5ep-17
2828-5ep-17
2828-5ep-17
2828-5ep-17
2828-5ep-17
2828-5ep-17
2828-5ep-17
2828-5ep-17
2828-5ep-17
2828-5ep-17
2828-5ep-17
2828-5ep-17
2828-5ep-17
2828-5ep-17

11:
aa:
15:
17:
17:
14:
1a:
1a:
a9
aa:
@a9:
a9
aa:
@a9:
a9
@a9:
a9
aa:
@a9:
a9
aa:
@a9:

LBk
. 3K
2M
M
.5M
.3M
.81
LA
21
.7M

7M™
LK
.8M

Type

Directory

Directory

Directory

Directory

Directory

Directory

Directory

Directory

Directory

text/plain

text/plain
application/octet-stream
application/zip
application/zip
application/zip
application/zip
application/zip
application/zip
application/zip
text/plain
application/x-xz
application/octet-stream
application/octet-stream

Here are some direct links to the downloads, though they may break in the future:
Windows: Godot_v3.2.3-stable winé4.exe.zip
MacOS: Godot v3.2.3-stable osx.64.zip

Unzip the file to wherever you want.

Step 2: Downloading Forward and importing into Godot
Access the github here: https://github.com/Nivrad00/social-landmines

Feel free to clone the repository or download the zip, you just need to know where your
repository is / where you downloaded for the next few steps. This walkthrough will go over the
process if you downloaded the Github repository as a zip file.

https://downloads.tuxfamily.org/godotengine/3.2.3/Godot_v3.2.3-stable_win64.exe.zip
https://downloads.tuxfamily.org/godotengine/3.2.3/Godot_v3.2.3-stable_osx.64.zip
https://github.com/Nivrad00/social-landmines

After downloading the zip file from Github, open Godot. On the right hand side should be a
button named Import.

Godot Engine - Project Manager - © 2007-2020 Juan Linietsky, Ariel Manzur & Godot Contributers

New Rakugo Game

The Question - Rakugo Port

The Question - Rakugo Port

Tree-testing

Yarn Importer

Click on the import button and a window should pop up asking you to find the project path. Click
Browse and find the location of the zip file you downloaded. After selecting the zip file, it will ask
you to specify an empty folder for the project installation path. Create an empty folder anywhere

and select it. If you did this properly, the window should look like this.

Step 2: Downloading Forward and importing into Godot
® Godot Engine - Project Manager - © 2007-2020 Juzn Linietsky, Ariel Manzur & Godot Contributors

ort: Name

Forward

New Rakugo Game

The Question - Ra Import Existing Project

Prc

al-landmines-mai
The Question - Ra

Tree-testing

Import & Edit Cancel

Yarn Importer

Click Import & Edit, and the editor should automatically open with the Forward project loaded. It
may take a moment to do this, so be patient and it should work fine.

From now on, after you open your Godot executable, Forward will be under Projects and you
can proceed to open it from there.

The repository will not be maintained and will need to be forked for future development.

Design decisions

Choosing a game engine

Ouir first objective was to choose an engine to create our visual novel. There exist engines that
are specifically designed for creating visual novels such as Ren’py and Visual Novel Maker, but
these engines were limited to the basic gameplay of selecting dialogue options. We wanted to
incorporate mini-games within the visual novel, such as coloring or visual aids to help with
breathing, which were either outside the scope of these visual novel engines or inconvenient to
implement.

Eventually we agreed to using Godot. We decided on using Godot due to two of our group
members, Darvin and Wayne, having previous experience working with Godot. The scripting
language of Godot, GDScript, is also closely based on Python which is relatively easy to pick
up. The documentation for GDScript is community developed and can be found here:
https://docs.godotengine.org/en/stable/getting started/scripting/gdscript/gdscript _basics.html.

Godot allowed the ability to incorporate the mini-games we wanted into our visual novel
relatively easily, so we thought it was the best choice for our project. Godot also allows easy
export to any device, as well as WebGL builds. We later found out that the version of Godot that
we were using, v3.2.3, did not support threads for web builds, which Forward uses extensively.
The latest version of Godot, v3.3.0, has added support for threads for web builds, but we had
not had the chance to update our version of Godot to the latest one.

Developers must be familiar with tree/node structure of Godot, and have knowledge of
GDScript. Because of how familiar GDScript is to Python, knowledge of Python will also
be sufficient. We have developed the game using Godot v3.2.3

Choosing frameworks and using Yarn

Ouir first decision after choosing Godot as our engine was to make the use of Yarn. Yarn is a
language and tool for writing game dialogue. The Yarn syntax found here
https://yarnspinner.dev/docs/syntax/ is mostly adhered to. We have also added some custom
syntax that can be found here:
https://docs.google.com/document/d/12xAfthQDePbqiCI3WboHg5VmQoYLBEpegsxNI4aJy8s/e

dit?usp=sharing

https://docs.godotengine.org/en/stable/getting_started/scripting/gdscript/gdscript_basics.html
https://yarnspinner.dev/docs/syntax/
https://docs.google.com/document/d/12xAfthQDePbqiCl3WboHg5VmQoYLBEpeqsxNl4aJy8s/edit?usp=sharing
https://docs.google.com/document/d/12xAfthQDePbqiCl3WboHg5VmQoYLBEpeqsxNl4aJy8s/edit?usp=sharing

We wanted to use Yarn because how it allows for the branching of narrative and dialogue
options, which is essential for visual novels. Most importantly, Yarn has its own Yarn Editor that
has an easy-to-use interface. All the dialogue for the game was written by Dr. Marraccini’s
research team, so using Yarn allowed them to write their branching narratives with minimal
coding experience. We found an addon for Godot called Yarn Importer that allowed us to
interface with Yarn files (extension .yarn) in Godot.

Working with Rakugo and Yarn Importer

Rakguo is an open source visual novel framework built as an add-on for Godot, which can be
found here: https://github.com/rakugoteam/Rakugo. It contains most of the functionality that a
visual novel would have such as a main menu, choice buttons, dialogue boxes, and
saving/loading. We decided to use Rakugo so that we did not have to make these features from
scratch, saving us a lot of time moving forward in our development. Rakugo has its own
custom-made functions that are documented here: https://rakugodocs.readthedocs.io/en/latest/.

We have made a variety of modifications to Rakugo to fix bugs, such as correctly remembering
state when using the “rollback feature” and correctly resetting state when exiting to the main
menu. We also extended Rakugo’s GUI to implement the mood thermometer, “coping
strategies” dropdown menu, and minigames.

Yarn Importer is an open-source tool built in Godot to parse Yarn files and run through the script,
outputting speech and choices to a graphic interface. The Github for Yarn Importer can be found

here: https://github.com/naturally-intelligent/godot-yarn-importer.

Yarn Importer can handle branching to different Yarn scenes, dialogue and choices but doesn’t
have functioning support for logic statements in Yarn and a few other features of the language.
We have added this additional support by adding an expression parser, a basic environment,
and additional logic to Yarn Importer’s parsing. This includes “set” statements which set
variables in the environment; a conditional system using if, else, elseif, and endif tags; the ability
to unconditionally jump from one node to another; and commands for setting the background
and the characters in the scene.

On top of these additions to Yarn Importer, we've created a script called
yarn-rakugo-interface.gd that extends yarn-importer.gd to interface with Rakugo.

Choosing not to use dynamic GDScript generation

Early in development we had to consider how to use yarn-importer alongside Rakugo. One of
the ideas was to use yarn-importer’s “export to GDScript” function and dynamically create
dialogue nodes that would populate the main scene tree before the game begins. This

pre-processed Yarn script would use the syntax detailed in Rakugo’s documentation.

https://github.com/rakugoteam/Rakugo
https://rakugodocs.readthedocs.io/en/latest/
https://github.com/naturally-intelligent/godot-yarn-importer

Instead, we decided to proceed with the method our final product is using, which is to iterate
through the Yarn script and have it interface with Rakugo’s functions in real time. We decided on
this since one of our members was working on making yarn-importer work with Rakugo, and
their implementation would have been made easier with the method we decided on.

File System and Structure

FileSystem

<

B yarn
(8 default_bus_layout.tres

@ default_env.tres

e res://addons contains all code related to the Rakugo framework.
e res://fonts contains fonts that are used by Rakugo and the game.
e res://game has three sub folders:

o res://game/audio contains all audio files.

o res://game/characters contains a folder for each character shown in the game.
Every character has their own folder with all image assets inside, as well as the
Godot scene pertaining to the character. There is also a folder for backgrounds,
which are treated the same as characters in Rakugo. All new character scenes
must be added to the main scene manually and follow the setup here

https://rakugodocs.readthedocs.io/en/latest/tutorials/show_and_hide/

o res://[game/main_scene contains the main Rakugo scene, as well as all the
scripts used for the questionnaire and end screen, which are children of the main
Rakugo scene. Note that in Godot, the term “scene” is used to refer to a
collection of hierarchical nodes in a .tscn file, while in Rakugo, a “scene” is a
special type of Godot scene that represents one chapter in a visual novel. We

https://rakugodocs.readthedocs.io/en/latest/tutorials/show_and_hide/

elected not to use Rakugo’s scene system, and rather built the entire game within
a single Rakugo scene -- namely, main_scene.tscn.

res://gui contains all user interface scenes and scripts that are used in the game. The
minigames, coping strategies menu, and thermometer are also located here, under
InGameGui.

res://saves is a folder that used to contain the save files for the game. This folder should
now be defunct -- saves are stored in user://saves so that they can be written to in the
exported builds.

res://themes contain all the themes used by containers and Ul elements (those in
res://gui)

res:/lyarn contains the expression parser, yarn-importer, and yarn-rakugo-interface. This
is also where all the Yarn scripts are located. All scripts must used the *.yarn file
extension, but can easily be opened and edited using any text editor or the free Yarn
editor at https://varnspinnertool.qgithub.io/YarnEditor/. Note that .yarn files are not
recognized as resources by Godot and thus cannot be opened within Godot. Instead,
they can be accessed using a file explorer. Scripts must be linked to each other using
the syntax described in the custom syntax document, otherwise they will not load. For
example, the final line in script “2 hallway” should be <<load 3 class 1>>

https://yarnspinnertool.github.io/YarnEditor/

Architecture

E Rakugo J] L yarn-importer J

User Interface J [Main Scene }—{ Yarn scripts

Forward is built using the Rakugo framework for visual novels. Rakugo came with a built-in user
interface that we adapted for our game. We also extended Rakugo to fix various bugs and to
add the coping strategies, thermometer, and minigame features. Rakugo requires a main scene
to function, as stated in their documentation. Yarn-importer is used in the main scene to read
Yarn scripts and interface them with Rakugo methods.

Decomposition

Modules

e Rakugo: The main module that the game is built upon. Most of the game’s user interface
elements such as the main menu, dialogue boxes, dialogue choices, and buttons came
from this framework. We are using Rakugo’s save/load, skip, and rollback features. We
are not using Rakugo’s hide function which hides the user interface while in game. The
yarn-importer script translates the Yarn scripts according to Rakugo standards in order to
display dialogue and choices. This means using Rakugo’s own functions that are in its
documentation.

https://rakugodocs.readthedocs.io/en/latest/
https://github.com/rakugoteam/Rakugo
https://rakugodocs.readthedocs.io/en/latest/

e Yarn-importer: Used to load and read Yarn scripts. We have adapted this to translate into
Rakugo’s standards. The script for this can be found in res://yarn, referenced in file
system and structure. The script yarn-rakugo-interface extends yarn-importer.

e InGameGui: This is a scene included with Rakugo that we modified to contain the coping
strategies dropdown menu, the mood thermometer, and the minigames.

O Brad

O Chad

O Peer2

O Juana

& YarnAudioPlayer
O Qi

O EndScreen

e Main Scene: Above is an image of the main scene that controls the scripts that are
displayed.

o

O

“questions” dialogue node: [No longer used]

“MainDialogue” dialogue node: decides which Yarn script to start with, then
iterates through Yarn scripts using yarn-importer.

All Node2D nodes (blue circles): contain Godot scenes that control what image is
shown, which Rakugo uses to display images.

YarnAudioPlayer: the single audio channel that plays audio for the game as
specified by <<start x>> and <<stop>> commands in Yarn scripts.

“Questions” control node: the questionnaire that is presented at the beginning of
the game.

“EndScreen” control node: the screen that is shown at the end of the game

https://github.com/naturally-intelligent/godot-yarn-importer
https://rakugodocs.readthedocs.io/en/latest/
https://rakugodocs.readthedocs.io/en/latest/

Data

e All variables declared in Yarn scripts, variables created by the questionnaire, and the
player’s mood are set as global variables that can be accessed at any time. They are set
in the script Global.gd, which is located in res://game/main_scene. These variables are
accessed by yarn-importer, minigames, the thermometer, and the end screen.

e All Yarn scripts are located in the yarn folder, as referenced in file systems and structure.
Yarn files should be structured according to yarn spinner syntax, which includes some
custom syntax made for Forward.

e Character and background assets that are used in Forward are located under
res://game/characters, also described in file systems and structure.

e Save files are made using the Rakugo framework. They are located under user://saves,
although Rakugo originally placed them in res://saves. Rakugo makes save files by
remembering every dialogue choice the player makes. When Rakugo loads a save file, it
performs what it calls a “jump,” where it simulates playing through the game from the
start of the Rakugo scene, making all the same choices the player made. (Note that the
rollback feature also requires making a jump, namely from the start of the Rakugo scene
to the line directly before the current one.) We have modified our variable storage to
make sure that variables altered by the questionnaire or minigames are preserved as
well when a save file is loaded.

Deployment

Note: These are instructions to deploy on Windows. Forward can be deployed to other platforms
by using the appropriate export template. However, it cannot be deployed to WebGL, as detailed
earlier.

To export, go to Project/Export... to pull up the Export window. Click on Add... to add the export
preset corresponding to the build you'd like to create, such as the Windows Desktop build. You
will be prompted to download an export template if you haven’t already.

Before you export exporting, under resources tab you must add “*.yarn, game/*” to the “Filters to
export” field, otherwise the game will crash on execute. The script export mode should be set to
“text.” This export configuration should be automatically saved the next time you open the
export dialog.

To set the application icons correctly on Windows, Godot requires a third-party program called
rcedit to be used. See this page for a tutorial.

https://docs.godotengine.org/en/stable/getting_started/workflow/export/changing_application_ic
on_for_windows.html

https://yarnspinner.dev/docs/syntax/
https://docs.google.com/document/d/12xAfthQDePbqiCl3WboHg5VmQoYLBEpeqsxNl4aJy8s/edit
https://rakugodocs.readthedocs.io/en/latest/
https://docs.godotengine.org/en/stable/getting_started/workflow/export/changing_application_icon_for_windows.html
https://docs.godotengine.org/en/stable/getting_started/workflow/export/changing_application_icon_for_windows.html

We have created Windows Desktop, Mac OSX, and Linux/X11 builds and tested on Windows
10, Mac OS 11.3.1, and Fedora 34.

Modifications

Although we started with the idea that Yarn scripts could be swapped in and out easily, the
process of creating, importing, and deploying new Yarn scripts turned out too complicated for a
non-technically experienced person to accomplish. The process of editing an existing Yarn file is
no more complicated than replacing that file in the file system. However, you may need
someone with Godot experience to test the new script and to deploy new builds.

	Forward Software Design
	Setting up Godot environment
	Design decisions
	Choosing a game engine
	Choosing frameworks and using Yarn
	Working with Rakugo and Yarn Importer
	Choosing not to use dynamic GDScript generation

	File System and Structure
	Architecture
	Decomposition
	Modules
	Data

	Deployment
	Modifications

