Polaris REST Idempotency Key Proposal

Author: Huaxin Gao

Summary

Introduce an optional ldempotency-Key HTTP header for mutation requests in the Polaris REST
API (e.g., create table/namespace, commit/update table, rename/drop, property updates). When
present, Polaris guarantees at-most-once execution for the same logical operation, enabling
safe client retries after transient failures without side effects. The feature is backward compatible
and opt-in for both servers and clients.

This document covers server-side changes. See Iceberg REST Catalog Idempotency for the
companion client proposal.

Motivation
Polaris exposes REST endpoints for table/namespace management and commits that traverse
multiple components (LB -> API server -> storage/persistence). Transient failures (network
partitions, restarts, timeouts) can leave clients uncertain whether a mutation completed. Naively
retrying can:

e Attempt a second commit with the same payload (duplicate effect), or

e Trigger client-side cleanup for a commit that actually succeeded (breaking referential

integrity and corrupting snapshots).

Current pain point example

1. Client calls POST /v1/tables/{name}/commit and server commits snapshot S.

2. A timeout or 5xx leads the server to return a commit state unknown error.

3. Client retries; server rejects with 409.

4. Client misinterprets 409 as failure and deletes manifest files, leaving metadata pointing
at missing files.

https://docs.google.com/document/d/1WyiIk08JRe8AjWh63txIP4i2xcIUHYQWFrF_1CCS3uw/edit?tab=t.0#heading=h.jfecktgonj1i

Short-term (today): clients avoid retrying when commit status is unknown to prevent duplicate
side effects.

Long-term (this proposal): With an Idempotency-Key, the server can safely recognize repeats
(replay original result, return 409 for in-flight, 422 for mismatched payloads, or reconcile stale
in-progress entries), so clients can retry on timeouts/5xx without risk.

Net effect: An Idempotency-Key lets Polaris detect repeated logical operations and return the
original outcome (or reconcile), eliminating these failure-induced hazards and simplifying client
logic.

Goals

e Guarantee at-most-once semantics for the same logical operation/payload.

e Ensure safe retries for non-validation failures (e.g., timeouts, 5xx), preventing duplicate
side effects.

e By default keep behavior unchanged when the header is absent.

e Expose capability discovery so clients know whether keys are honored and for how long.

Non-Goals

e Mandate a specific persistence schema or storage engine.

API Design

Header: Idempotency-Key
e Where: HTTP request header on mutation routes (POST/PUT/DELETE).
e Type: string; Pattern: " [a-zA-70-9][a-zA-Z0-9_.-]*S; Length: 1-255.

e Generation: Clients SHOULD use a cryptographically random generator (e.g., UUID
v4).

e Reuse rule: A key MUST be reused only when retrying the same canonical request
payload for the same logical operation.

Scope

Keys are scoped to (HTTP method, normalized resource path, tenant/catalog identifier,
Idempotency-Key) to prevent cross-endpoint collisions. Examples:

(POST, /vi1/tables/db.tbl/commit, tenantA, K)

(POST, /vi1/namespaces/db, tenantA, K)

Server Behavior

e Bing ¥ I catpaviead_hash:

First acceptance (Normative): Associate the scoped key with a stable payload identity for
the request.

Informative (Polaris example): Compute the identity as SHA-256 over RFC
8785—canonicalized JSON.

Duplicate key with same canonical payload (hash matches): Return the original finalized
response (success 200/201/204 or the original terminal 4xx); do not re-execute.
Transient 5xx MUST NOT be stored or replayed.

Duplicate key with different canonical payload (hash differs): Return 422 Unprocessable
Content (problem type: idempotency_key_conflict).

In-flight duplicate: If the key is reserved but not finalized for the same payload, return
409 Conflict (problem type: request_in_progress; MAY include Retry-After).

Replay policy (Normative): A prior result may be replayed only if the earlier attempt
reached a finalized outcome (2xx or terminal 4xx). The server MUST NOT replay
transient Sxx or unknown outcomes.

Informative (Polaris example): Implementations typically persist enough information to
enable replay, but the exact mechanism is an internal concern.

Discovery (Server -> Client)

When Polaris serves the Iceberg REST Catalog API, it MUST advertise idempotency support
via GET /v1/config (getConfig). The response contains a properties map (string -> string).

Example getConfig response

"properties": {

"idempotency-key-supported

"true",

"idempotency-key-lifetime": "PT30M"

}

Fields

idempotency-key-supported — "true" or "false" (string values, per getConfig
conventions).

idempotency-key-1lifetime — ISO-8601 duration string (e.g., "PT36M"); advisory
minimum retention window.

Client behavior:

If getConfig.properties is absent, or either key is missing/invalid, clients MUST treat
idempotency as unsupported and MUST NOT enable automatic same-key retries.

Only when both keys are present and valid may clients enable idempotent retries
(bounded by the advertised lifetime).

Status Codes

200/201 /204 — Success; duplicates with same payload return the original success.
409 Conflict — Duplicate for a key currently IN_PROGRESS.

422 Unprocessable Content — Same key used with a different payload.

5xx Server error — For mutation endpoints, clients MUST NOT retry by default. If
and only if Idempotency-Key is present and the server advertises idempotency via

Iv1/config, clients MAY retry the same key within the advertised
idempotency-key-lifetime.

OpenAPI Additions

Add an optional Idempotency-Key header parameter to all mutation endpoints in
openapi.yaml and enumerate 409/422 responses where applicable.

Client-Side Changes (Polaris & Iceberg Integrations)

e Attach Idempotency-Key to mutation requests that may be retried (default:
auto-generate UUID v4 per operation).

e Ensure client retry logic reuses the same Idempotency-Key for retries of the same logical
operation and payload.

e Read discovery to decide retries and stop once elapsed time exceeds
idempotency-key-1lifetime (raise IdempotencyWindowExpired).

e Expose APIs for application clients to supply an Idempotency-Key per operation.

Server Design (Implementation-Flexible)

Canonicalization

e Use RFC 8785 (JSON Canonicalization Scheme) for deterministic payload hashing
across languages.

e Hash function: SHA-256 (canonicalPayload); store lowercase hex.

Request Flow (HTTP filter/interceptor)

e HTTP filter extracts Idempotency-Key, canonicalizes the payload (RFC 8785), and
computes H(P) = SHA-256(canonicalPayload).

e Reserve: attempt to create a reservation row for (scope, key) bound to hash H. The row
is in progress until a terminal HTTP status (2xx or terminal 4xx) is written. If duplicate:

o FINALIZED & H match -> replay stored success (200/201/204).

o IN_PROGRESS & H match ->
m if still active -> 409 request_in_progress;
m else -> Reconciliation (see below Reconciliation section).

o H differs -> 422 Unprocessable Content
(idempotency_key_conflict).

https://docs.google.com/document/d/1WyiIk08JRe8AjWh63txIP4i2xcIUHYQWFrF_1CCS3uw/edit?tab=t.0#heading=h.jfecktgonj1i
https://www.rfc-editor.org/rfc/rfc8785

e Execute the mutation handler (only when reserved).

e Finalize: set FINALIZED, persist terminal response (200/201/204 or terminal 4xx).
Transient 5xx are returned but not persisted; the row remains IN_PROGRESS (retry ->
reconciliation).

e Error paths: if commit succeeds but finalize fails, the row remains IN._ PROGRESS; On
retry, apply the reconciliation flow to verify/apply state and finalize.

Top-level request flow

Client Gateway (header/hash) Handler (idempotency) DB

| | | |

|-- POST(K,P) | | |

| | K=Idempotency-Key |

| P*=RFC8785(P); H=SHA256 | |
|

|

| |---- reserve(scope,K,H) -=-=-——--mmmmmmm - >

| [<===-mm - OK(reserved) / DUP ------- |

| | | |

| | |-- [A] DUP & FINALIZED & H --->| (replay)
| | |-- [B] DUP & IN_PROGRESS & H --| (active?)
| | |-- [C] DUP & H differs -------- | (422)

| | |-- [D] reserved --------------- | (execute)
| | |-- [E] error paths ------------ |
(finalize?)

| | | |

Legend

e Gateway = pre-matching request filter/interceptor (parse header, canonicalize JSON,
compute hash).

e Handler = idempotency lookup/reserve/replay + mutation execution.

e DB = idempotency table + catalog state.

Zoom-ins (one per branch)
[A] DUP & FINALIZED & H -> replay

Client Gateway (header/hash) Handler (idempotency)
DB

|-- POST(K,P) ------------ >
|

| | K=Idempotency-Key

| | Px=RFC8785(P); H=SHA256 |

N i e b b >|-- SELECT idemp_rec(scope,K)

| state=FINALIZED, H
matches

| |-- fetch stored terminal
response ->

| 200/201/204 (or original terminal 4xx)

[B] DUP & IN_PROGRESS & H -> active?

Client Gateway (header/hash) Handler (idempotency)
DB
I I I

I
|-- POST(K,P) -=---=-=---- >| |

| K=Idempotency-Key |

| P*=RFC8785(P); H=SHA256 [

| [=== >|-- SELECT idemp_rec(scope,K)

————— >
I I

<= FOUND

| | | state=IN_PROGRESS, H
matches |

| | |-- check "still active?"
__________ >|

| | | <mmmmmmees VES

| <= | === |

I

| 409 request_in_progress |

I

I I I

I

| | |-- check "still active?"
—————————— >

| | | <=mmmmmmes NO

| | |---> go to Reconciliation
(R1/R2) |

[C] DUP & H differs -> 422

Client Gateway (header/hash) Handler (idempotency)
DB

I
|-= POST(K,P) -===-==-=-=- >| |

| | K=Idempotency-Key [
|
| | P*=RFC8785(P); H=SHA256 |
I
I

[-==mmmm - >|-- SELECT idemp_rec(scope,K)

| | H differs from stored H

422 idempotency_key_conflict

[D] Reserved -> execute + finalize

Client
DB
I

I
|-- POST(K,P)

COMMIT OK
I

idemp_rec(200/201/204) ->|

———————————— > |
| K=Idempotency-Key
| P*=RFC8785(P); H=SHA256
| _____________________
I
|
|
I
I

[€===mmmmm
200/201/204

Gateway (header/hash)

[E] Error paths (no transient replay)

Client
DB

I
I
|-- POST(K,P)
I
I
I
I

Gateway (header/hash)

K/H prepared

Handler (idempotency)

Handler (idempotency)

return terminal 4xx

I
|
-
o
w
3
—
~
o
~
—
[8)
>
o
—~+
>
o
=
~
|
|
\"

transient 5xx|

I |
IN_PROGRESS |

Reconciliation) |

Reconciliation branches (when [B] says “inactive”)

R1. Finalize-gap (state already applied)

Client Gateway (header/hash)
DB

| |

|

I |

matches P ->|

I |

MATCH |

idemp_rec(200/201/204)->|

I 200/201/204

R2. Takeover (state not applied)

Client Gateway (header/hash)
DB

COMMIT OK

| DO NOT finalize; stay

[(next retry ->

Handler (idempotency)

|-- verify catalog state

Handler (idempotency)

| -- execute mutation

| | |-- finalize
idemp_rec(200/201/204)->|

|<=mmmmmmmm oo | ==mmmmmmm e I
| 200/201/204 I

| | |-- if incompatible on

A Persistence Schema Example

CREATE TABLE idempotency_records (
realm_id VARCHAR NOT NULL,
method VARCHAR NOT NULL,
resource_path VARCHAR NOT NULL,
idempotency_key VARCHAR NOT NULL,

payload_hash CHAR(64) NOT NULL,
http_status INTEGER,

created_at TIMESTAMP NOT NULL,
updated_at TIMESTAMP NOT NULL,
expires_at TIMESTAMP,

PRIMARY KEY (realm_id, method, resource_path, idempotency_key)
);

CREATE INDEX idx_idemp_expires
ON idempotency_records (expires_at);

Expiration & Cleanup

e TTL based on idempotency-key-1ifetime + buffer; background job to purge
expired rows.

e Configuration knobs: enable/disable, lifetime.

Endpoints in Scope

e POST /v1/namespaces (create), DELETE /v1/namespaces/{ns} (drop)

e POST /v1/tables (create), POST /v1/tables/{name}/commit (update/commit),
DELETE /v1/tables/{name} (drop), POST /v1/tables/{name}/rename
(rename)

e Property/metadata updates that mutate catalog state

(Non-mutating GET/HEAD routes are out of scope.)

Backward Compatibility

e Default behavior (no header): When the Idempotency-Key header is absent, servers
behave exactly as today.

e Client adoption: Clients may adopt the header incrementally. Capability discovery
prevents futile same-key retries where unsupported.

Testing Plan
e Discovery gating: enable/disable auto same-key retries based on getConfig fields.

e Duplicate handling: replay success (same key+payload), 422 on payload mismatch, 409
in-flight.

e Finalize-gap recovery: stale lease + state matches -> finalize + replay success.
e No 5xx caching: transient errors aren’t stored.

e Lifetime/expiry: retries stop after advertised lifetime; expired records behave as
unknown.

e Canonicalization: RFC 8785 cross-lang vectors yield identical hashes.

Full scenarios will be exercised in the Catalog Compatibility Test Kit and server integration tests.

Appendix A — OpenAPI Sketch

idempotency-key:
name: Idempotency-Key
in: header
required: false
schema:
type: string
pattern: 'A[a-zA-Z0-9][a-zA-Z0-9_.-]*$'
minLength: 1
maxLength: 255
example: "550e8400-e29b-41d4-a716-446655440000"
description: |
Optional client-provided idempotency key for safe request retries.

When provided, the server guarantees at-most-once execution for requests
with the same key. If a request with this key has already been processed

successfully, the server returns the original result instead of
reprocessing.

Key Requirements:

- Must be unique per client mutation operation (e.g., updateTable,
createTable)

- Should be generated randomly (e.g., UUID v4)

- Scoped to operation type and resource path

- Catalogs may expire keys according to the advertised token life time.
Best Practices:

- Use UUID.randomUUID() or equivalent

- Reuse the same key for retries of the same logical operation

- Generate new keys for new operations

Appendix B — Server Config Knobs (example)

polaris.idempotency.enabled=true
polaris.idempotency.lifetime=PT30M
polaris.idempotency.cleanup.enabled=true

Appendix C — Example Client Snippet (Java)

String key = UUID.randomUUID().toString();
Request req = Request.post(url)
.header("Idempotency-Key", key)
.bodyString(payloadJson, ContentType.APPLICATION_JSON);
Response resp = httpClient.execute(req);

Appendix D — Example with Retry

public static HttpResponse<String> postWithIdempotencyRetry(
HttpClient client,
URI url,
String payloadJson,
Duration lifetime,
int maxAttempts
) throws Exception {

String key = UUID.randomUUID().toString();
Instant firstAttempt = Instant.now();

for (int attempt = 1; attempt <= maxAttempts; attempt++) {
HttpRequest request = HttpRequest.newBuilder(url)
.header("Content-Type", "application/json")
.header ("Idempotency-Key", key)
.POST(HttpRequest.BodyPublishers.ofString(payloadJson))
.build();

HttpResponse<String> response =
client.send(request, HttpResponse.BodyHandlers.ofString());

int code = response.statusCode();

if (code == 200 || code == 201 || code == 204) {
return response; // success or finalized replay

if (code == 409) { // request_in_progress
Thread.sleep(260L);
continue;

if (code == 422) { // idempotency_key_conflict
throw new IllegalStateException(
"Idempotency key conflict (422) - payload differs");

if (code >= 500
&& Duration.between(firstAttempt, Instant.now()).compareTo(lifetime)
<= 0) {
continue; // retry with the SAME key
}

throw new RuntimeException(
"Request failed: " + code + " body=" + response.body());

throw new RuntimeException("Max attempts exceeded or idempotency window
elapsed.");

}

	Polaris REST Idempotency Key Proposal
	Summary
	Motivation
	Non‑Goals
	API Design
	Header: Idempotency-Key
	Scope
	Discovery (Server -> Client)
	Status Codes
	OpenAPI Additions

	Client-Side Changes (Polaris & Iceberg Integrations)
	Server Design (Implementation‑Flexible)
	Canonicalization
	Request Flow (HTTP filter/interceptor)
	Top-level request flow
	Zoom-ins (one per branch)
	A Persistence Schema Example
	Expiration & Cleanup

	Endpoints in Scope
	Backward Compatibility
	Testing Plan
	Appendix A — OpenAPI Sketch
	Appendix B — Server Config Knobs (example)
	Appendix C — Example Client Snippet (Java)
	Appendix D — Example with Retry

