8.3.2 Trigonometric Substitutions

Some finesse substitutions involve introducing a trig function in order to exploit identities and ultimately make the forms easier to deal with

For example, if a function contains $\sqrt{a^2-x^2}$, it usually works to substitute $x=a\sin\theta$ If a function contains $\sqrt{x^2-a^2}$, $\sqrt{x^2-a^2} \longrightarrow x=a\sec\theta$ And for $f\left(x^2+a^2\right) \longrightarrow x=a\tan\theta$

Ex 1
$$\int \sqrt{1-x^2} dx$$
Ex 2
$$\int \frac{x^2}{9+x^2} dx$$
Ex 3
$$\int \frac{\sqrt{x^2-4}}{x} dx$$
Ex 4
$$\int \frac{4}{\sqrt{x}\sqrt{1-x}} dx$$

p.581#17, 18 do5,20