
 

KubeVirt Incubation Due Diligence 
September-November 2021 

Authors: Fabian Deutsch, David Vossel, Petr Horacek, Chris Callegari, Karena Angell, 
Diane Mueller, Josh Berkus, Peter Lauterbach 
 
Reviewed by:​Ricardo Aravena, Chandler Wilkerson, John Herr, Michael Henriksen, Ryan 
Hallisey, Roman Mohr 
 
TOC Sponsor:  Alena Prokharchyk
TAG Input: TAG Runtime (Ricardo Aravena) 
TOC Ticket:  https://github.com/cncf/toc/pull/715 
 
Table of Contents 

Introduction 
Project Description 
CNCF Mission & Principles 
Project Overview Presentation 

Incubation Criteria Summary 

Technical 
Architectural Overview 

Usability tradeoffs 
Cloud Native Use Cases 
Progress since CNCF Sandbox Status 
Performance and Scalability 

Performance Goals and Achievements 
Compute performance 
Network performance 
Complexity/reliability tradeoffs 
Integration/Performance tradeoffs 

Scalability Goals and Achievements 
Performance/scalability tradeoffs 

High Availability 
Control Plane 
Workloads 

Coding Standards and Quality 
Code Quality 
Dependencies 

CI/CD Status 
Security 

mailto:aprokharchyk@apple.com
https://github.com/cncf/toc/pull/715


 

Security tradeoffs 
Supply chain security 

Roadmap 

Project 
Governance 
Contributions 
Community 

Adoption 

Context 

Recommendations from the DD Process 
 

Introduction 
Name: ​ ​ KubeVirt  
Web site: ​ ​ https://kubevirt.io/ 
Source control: ​ https://github.com/kubevirt 
Code of Conduct:​
https://github.com/kubevirt/community/blob/main/code-of-conduct.md 
License: ​ ​ APL 2.0 

CNCF TOC Ticket:  https://github.com/cncf/toc/pull/715​  

Project Description 
KubeVirt technology addresses the needs of development teams that have adopted or want 
to adopt Kubernetes but possess existing Virtual Machine-based workloads that cannot be 
easily containerized. More specifically, the technology provides a unified development 
platform where developers can build, modify, and deploy applications residing in both 
Application Containers as well as Virtual Machines in a common, shared environment. 
In addition we have seen an uptick of interest from infrastructure teams, which are aiming to 
modernise their existing infrastructure - usually a virtualization management stack - with a 
cloud-native alternative such as Kubernetes. These teams still have a hard requirement to 
continue running existing as well as new Virtual Machines, i.e. for hard multi-tenancy. 
 
Benefits are broad and significant. Teams with a reliance on existing virtual machine-based 
workloads are empowered to rapidly containerize applications. With virtualized workloads 
placed directly in development workflows, teams can decompose them over time while still 
leveraging remaining virtualized components as is comfortably desired. 
 
KubeVirt entered CNCF Sandbox September 9, 2019. 

https://kubevirt.io/
https://github.com/kubevirt
https://github.com/kubevirt/community/blob/main/code-of-conduct.md
https://github.com/kubevirt/kubevirt/blob/main/LICENSE
https://github.com/cncf/toc/pull/715
https://github.com/openshift/cluster-api-provider-kubevirt


 

CNCF Mission & Principles 
The KubeVirt project exists to aid users in moving from older frameworks to Cloud Native 
ones. 

Project Overview Presentation 
KubeVirt was presented to TAG Runtime: 

-​ Presentation (link) 
-​ Recording (link) 

Incubation Criteria Summary 
See the Incubation criteria for reference. 
 
CNCF Code of Conduct  

●​ Kubevirt CoC 
 
Adhere to CNCF IP Policy  
As an existing Sandbox project this is already in place. 
 
Production usage 
Yes.  
 
Project end users are maintained in the Adopters files 
Significant production users include: 

●​ Red Hat 
●​ NVIDIA 
●​ SUSE 
●​ Kubermatic 
●​ H3C 
●​ CoreWeave 
●​ Civo 
●​ CloudFlare 
●​ Ateme 
●​ Cloudbase Solutions 

 
Healthy number of committers 
Yes - see section on Community  
 
Flow of contributions 
While Red Hat remains a core contributor according to the numbers, several larger 
organisations have picked up KubeVirt, putting it in the best spot to see more external 
contributions. 

https://drive.google.com/file/d/1EYw1_PEVIqs0yhwdq6J4rszFHe7ai3Xg/view?usp=sharing
https://youtu.be/KvRM4e4_K8c
https://github.com/cncf/toc/blob/main/process/graduation_criteria.adoc#incubation-stage
https://github.com/cncf/foundation/blob/master/code-of-conduct.md
https://github.com/kubevirt/kubevirt/blob/main/CODE_OF_CONDUCT.md
https://github.com/cncf/foundation/blob/master/charter.md#11-ip-policy
https://github.com/kubevirt/kubevirt/blob/main/ADOPTERS.md


 

 
Clear versioning scheme & release methodology 
Some excerpts from our release procedure: 

●​ Both a new release branch and initial release candidate are cut on the first business 
day of each month. 

●​ If no blocker issues are discovered the release candidate is promoted to a full 
release after 5 business days. 

●​ If blockers are detected, a new release candidate is generated and will be promoted 
after giving the impacted parties enough time to validate the blocker is addressed. 

●​ Releases are cut from release branches must adhere to semantic versioning 
conventions. 

The complete release process is described in detail in release.md and the backporting 
process in a separate file. 
 
Clearly documented security processes 
Yes - https://kubevirt.io/2020/KubeVirt-Security-Fundamentals.html and the KubeVirt 
Security Policy. The KubeVirt Security Policy will be enhanced with more steps and 
information.  
 

Technical 

Architectural Overview 
In essence, in simple words, KubeVirt by itself is a cloud-native application for Kubernetes. 
It is leveraging the Operator pattern for application (KubeVirt) deployment. And CRs for 
specifying the user workloads - the VMs. 
Controllers and node agents are used to create and manage pods for every VM that is 
getting created - according to the CRs. Ultimately having the VM running inside a pod 
leveraging the Kubernetes resource model (incl. CSI and CNI). 
 
An in depth architecture discussion can be found in architecture.md. 

Usability tradeoffs 
While KubeVirt builds on Kubernetes primitives like pods, KubeVirt is introducing dedicated 
APIs for the virtualization entities, such as VMs. This was a deliberate decision, to have sane 
ways to express virtualization functionality like live migrations, and to avoid interference with 
container workflows and terms. The downside of this approach was that the pod api (and 
tools building on top of this), could not directly drive VMs. 

https://github.com/kubevirt/kubevirt/blob/main/docs/release.md
https://github.com/kubevirt/kubevirt/blob/main/docs/release-branch-backporting.md
https://kubevirt.io/2020/KubeVirt-Security-Fundamentals.html
https://github.com/kubevirt/kubevirt/security/policy
https://github.com/kubevirt/kubevirt/security/policy
https://github.com/kubevirt/kubevirt/blob/main/docs/architecture.md


 

Cloud Native Use Cases 
●​ KubeVirt enables a unified development platform for modernization. Developers can 

build, modify, and deploy applications in both containers and VMs in a collaborative 
environment. 

●​ Developers can use modern could-native tooling like Tekton, Istio, and ArgoCD, 
whether the functionality is in a VM or a container. 

●​ Application modernization - Legacy 3-tier architecture apps, which consist of a 
presentation tier, application tier and data tier, can run directly on Kubernetes. Some 
of all of the application functionality can be refactored as cloud native as the pace of 
the business demands. 

●​ For applications that will not be modernised, you can run legacy VMs (Linux and 
Microsoft Windows) on the same container platform, with the same operations team. 

●​ KubeVirt enables infrastructure teams to modernise their stack using cloud-native 
technologies like Kubernetes - but still require VMs to meet existing and new 
(hard-multi tenancy for Kubernetes) use-cases. 

Progress since CNCF Sandbox Status 
There were almost 30 releases between entering the Sandbox and today. The list below is 
incomplete and is just mentioning (in a lossy way) highlights: 
 

●​ API 
○​ Almost all APIs are stable (v1) by now 

●​ Performance & Scale 
○​ Several performance improvements (pinning of emulator threads, iothreads, 

vNUMA, …) and tunables 
○​ Several scale improvements and tunables (controller threads, …) 
○​ Scale tested (by community members) up to 10k VMs 
○​ Creation of SIG Scale 

●​ Storage 
○​ CSI based snapshot support 
○​ Disk hot-plug with “sidecar pods” 

●​ Compute 
○​ ARM64 support 
○​ UEFI support 
○​ Support for PCI, GPU, and vGPU configuration and passthrough 
○​ Cgroups v2 
○​  

●​ Network 
○​ SR-IOV support 

●​ Operations 
○​ SSH endpoint for easier SSH access to VMs 
○​ Guest Agent support for more guest informations 



 

○​ Requests, limits, and priority classes for control plane components for 
resource constrained environments 

○​ Libguetsfs integration for easy disk manipulation 
●​ Observability 

○​ Standardisation of alert and metric names 
○​ Many more valuable alerts around control plane readiness 
○​ Runbooks (https://github.com/kubevirt/monitoring/tree/main/docs/runbooks) 
○​ Grafana Dashboards 

(https://github.com/kubevirt/monitoring/tree/main/dashboards) 
●​ Security 

○​ Dropped requirement on privileged pods for VMs 
○​ Dropped requirement on multiple capabilities for VM pods 

●​ CI/CD 
○​ Full move to tide and prow 
○​ Significantly lower number of flaky tests 
○​ Continuously increased number of functional tests 
○​ Significantly improved test runner infrastructure (kubevirtci) 
○​ Merge gating is active 

●​ Tooling 
○​ Extraction of goclient 

●​ Ecosystem 
○​ Fixes in Istio for enabling KubeVirt 
○​ Tekton Tasks 
○​ ArgoCD helpers 
○​ Konveyor for import from existing VM mgmt platforms to KubeVirt 
○​ Healthy relationship to the libvirt and qemu projects 

●​ Vendors 
○​ Red Hat OpenShift includes KubeVirt 
○​ SUSE Rancher Harvester includes KubeVirt 
○​ Platform9 provides managed KubeVirt 
○​ Google Anthos includes KubeVirt 
○​ … 

●​ Community 
○​ Adoption of conscious and inclusive language 
○​ Continuous stream of new contributors 

Performance and Scalability 

Performance Goals and Achievements 
When speaking of performance, we are usually differentiating between data plane (VM 
workload performance - "How fast is the VM?") and control plane (VM creation latency - 
"How fast is the VM scheduled and entering the running state?"). 
Scheduling related performance is often related to scale, and therefore covered in the scale 
section below. 
This section will cover workload performance. 

https://github.com/kubevirt/monitoring/tree/main/docs/runbooks
https://github.com/kubevirt/monitoring/tree/main/dashboards


 

 
KubeVirt’s goal for workload performance is to be as fast as plain KVM. Thus a VM running 
on nothing but a clean host OS. This is usually equivalent to being as fast as existing VM 
management platforms like oVirt or OpenStack. 
 
Considering that KubeVirt is running on top of Kubernetes, including cri-o and all it entails, it 
might be surprising that the actual stack of technologies between KubeVirt at runtime is very 
very similar to the stack when running VMs with libvirt on a clean OS. 
This is due to the fact that on a plain OS, systemd and libvirtd are leveraging similar 
mechanisms (mainly namespaces and cgroups, but also SELinux on certain OSses) as the 
container stack is using. 
 
Given the fact that VMs are essentially run as on a plain OS, KubeVirt is benefitting from 
usually all improvements done around KVM, qemu, and libvirt. And also avoiding adding any 
penalty due to additional layers - which KubeVirt does not introduce on the node level. 

Compute performance 
Significant progress has been made since joining the Sandbox in i.e. supporting CPU 
pinning, host topology representation in the guest (vNUMA), support for CPU manager, and 
dedicated IO and emulator threads. PCI and mdev passthrough is indirectly relevant, as it 
enables the use of accelerators such as (v)GPUs and FPGAs inside the VM. 
 
Recent evaluations performed by SUSE have confirmed that good performance can be 
achieved. 

Network performance 
High performance networking is enabled by supporting SR-IOV via PCI passthrough. 

Complexity/reliability tradeoffs 
When at all possible, KubeVirt leverages existing Kubernetes constructs rather than 
inventing something net-new. This is why VMs are launched within Pods and why VM 
persistent state is represented as PVCs. This tradeoff limits KubeVirt to the feature set 
provided to Pods, which do not always align with how VMs are used in practice. One of the 
most glaring examples of this is that pods are immutable, while VMs traditionally are not. It’s 
a common use case to add memory/cpu/disks to a running VM, but those concepts don’t 
exist for pods. However, in return KubeVirt leverages the existing Kubernetes scheduler and 
existing CRI implementations to schedule/launch VM environments. 

Integration/Performance tradeoffs 
KubeVirt has always favoured a good integration over performance. Luckily this tradeoff had 
not to be made too often, but does shine through i.e. in the SLIRP network binding. 

https://kubevirt.io/2020/KubeVirt_deep_dive-virtualized_gpu_workloads.html
https://www.youtube.com/watch?v=cVcJY20ypnw
https://www.youtube.com/watch?v=PJ4D2NqMO2A


 

Scalability Goals and Achievements 
KubeVirt is an add-on to Kubernetes, thus the general guideline has been to follow 
Kubernetes’ when we speak about scale. 
However, by now Kubernetes has continued to improve its scale, and can be scaled to very 
large footprints. KubeVirt will discuss if it can and/or should - or can - scale this well as well. 
There is a dedicated SIG (SIG Scale) part of the community to look at scale - looking at 
several scale related aspects. 
 
Architecture wise Kubernetes patterns for controllers and node agents have been adopted in 
order to scale as well as Kubernetes does. 
 
Recently the introduction of tunables around controller memory and CPU requests, as well 
as controller threads, rate limiting etc has helped to scale KubeVirt up to 10k (and beyond) 
VMs. 

Performance/scalability tradeoffs 
In order to simplify the architecture and ensure that VMI workloads remain independent from 
one another, the decision was made to have a 1 to 1 relationship between libvirt 
instances and VMI workloads, where the libvirt instance lives in the same pod as the 
VMI workloads. This tradeoff favoured reliability and security over performance and 
scalability. It requires a slightly (almost neglectable) larger memory and cpu footprint for 
each VMI workload to have a libvirt instance running per VMI, but it avoided the 
complication of attempting to have a node level centralised libvirt manage qemu 
processes with containers launched by the container run time. 

High Availability 

Control Plane 
 
KubeVirt mirrors the Kubernetes architecture. It consist of three main components: 
 

●​ virt-api - stateless and therefore scalable component which deals with API-level 
tasks 

○​ Webhooks 
○​ Proxying (vnc, port-forward, …) 
○​ The virt-api Deployment has a service as frontend which is registered in the 

apiserver which leads to traffic distribution and automatic failover  
●​ virt-controller - contains all kubevirt related controllers. It is very similar to the 

kubernetes-controller-manager. It can not be scaled, but hot-standby replicas are 
running which take over if the current leading virt-controller can’t refresh the leader 
lock. It uses a Deployment. 

●​ virt-handler - Node daemon, comparable with the kubelet. It is distributed to the 
nodes via a DaemonSet. If virt-handler on a node goes down, it will be restarted. 

https://kubernetes.io/docs/setup/best-practices/cluster-large/
https://kubernetes.io/docs/setup/best-practices/cluster-large/
https://docs.google.com/document/d/14ffhIa9IbL3Ug4HssI2PAy6qhW90Z5yk-zR3doNoTiA/edit
https://docs.google.com/document/d/1FBek8ugZVmpirkf8PKk_PDNmqPh5QuHcEshdPaS-uHU/edit
https://fosdem.org/2022/schedule/event/vai_kubevirt_scale/


 

Restarts have no impact on running VM workloads. If virt-handler can’t be started 
again, the VM workloads are not endangered, but no new VM can be scheduled to 
the node and some high-level functions do not work anymore for these VMs.   

 
KubeVirt has a zero-downtime update flow. The sole possible visible interruptions are: 

●​ Proxy connections through a virt-api instance may be terminated, but can be 
re-established immediately 

●​ On nodes, during the update of virt-handler, some high-level functions may not work 
for a few seconds. Only a limited  set of nodes is affected at the same time. 

Workloads 
Workload high availability i.e. restarting VMs in the case of a node failure is indirectly 
provided. 
KubeVirt aligns to Kubernetes behaviours when it comes to node unavailability: A VM will 
stay in an unknown state unless the node becomes ready again, or the node is getting 
deleted (incl. All of it’s workloads). Thus in effect the remediation of an unhealthy node is 
required in order to provide workload high availability. In the past such a mechanism was 
called fencing. 
The Kubernetes ecosystem has a couple of tools to do automatic node remediation. One of 
them - tested with KubeVirt - is medik8s. 
It was clear that KubeVirt would need to find a solution for HA, but at the same time it was 
clear that this was not a KubeVirt only problem. Therefore the focus was on adopting 
ecosystem solutions for node remediation. 

Coding Standards and Quality 

Code Quality 
A list of architectural decisions and coding standards which have to be considered and are 
not fully enforced through automation is available: 
https://github.com/kubevirt/kubevirt/blob/main/docs/reviewer-guide.md 
 
For defining the lowest acceptable standards the project relies on automation. People have 
to pass the automated check and they have to add unit tests and end-to-end tests for their 
features and fixes. All tests are run and required to pass on each PR. Maintainers are 
allowed to take in code with varying quality for as long as the project's maintainability is not 
at stake and all required criteria are met (especially the testing and architectural criteria) to 
be open and inclusive. 
 
The lowest bar for acceptable coding styles is enforced via automation: 

●​ goimports to enforce a common coding style for go code 
●​ shfmt to enforce a common coding style for bash scripts 

​
The lowest bar for acceptable golang coding standards  (anti-patterns, coding errors, …) is 
enforce via automation: 

https://github.com/medik8s/
https://github.com/kubevirt/kubevirt/blob/main/docs/reviewer-guide.md
https://pkg.go.dev/golang.org/x/tools/cmd/goimports
https://github.com/mvdan/sh


 

●​ nogo from bazel is used and applies a huge set of code analyzers when one builds 
kubevirt. If a check fails the build fails. 

●​ In addition to standard nogo analyzers the project added ineffassign to its nogo 
execution. 

 
Even good reviews and automation can’t catch all. When common mistakes are identified, 
actions are considered and precautions get implemented to avoid them in the future. For 
example: The project repeatedly saw regressions where some inefficient REST calls got in 
where a watcher should have been used. To identify and fix these issues, efforts are going 
on in KubeVirt’s SIG scaling: 

●​ PRs fixing issues identified by sig scaling: #6226, #6168 
●​ Automation worked on to identify such issues on the PR level already: #38, #1211 

Dependencies 
General Overview: 

●​ The cluster-level control plane consists of pure go code. All dependencies are 
vendored into the codebase.  

●​ The node-level infrastructure has additional dependencies (RPM based): 
○​ System tools (nftables, iptables, …) 
○​ The main virtualization components (libvirt, qemu) 

●​ To control the dependency chain of the node-level infrastructure the project builds  
“distroless” containers based on Fedora RPMs (soon Centos8 stream). This allows to 
minimise the image size and reduces the risk of being exposed to CVEs. More 
information is available in the dependency-update guide. 

●​ The project protects itself from losing external dependencies (like RPMs, 
cross-compilers, ...) by mirroring external dependencies to a GCS bucket. 

●​ All dependencies are defined in the codebase and contain a checksum and can be 
exchanged by any developer within a PR to make feature development as seamless, 
self directed and easy as possible. 
In order to stay safe, automation is in place which verifies that new dependencies are 
trustworthy (for instance checking that a RPM signature is from a trusted source and 
checking shasums). Further the project does not make use of Dockerfiles for 
reproducibility and safety reasons: The containers are built with bazel without a base 
image. 

 
Locations where the dependencies are defined: 

●​ Go dependencies: go.mod and the corresponding vendor folder 
●​ RPM dependencies: WORKSPACE contains all referenced RPMs and 

rpm/BUILD.bazel shows which containers will contain which rpms. RPM resolution 
can be done in hack/rpm-deps.sh. 

 
The integration with Kubernetes depends on CRDs, API Server Aggregation, Device 
Plugins, and to a certain extent on CRI and CSI 
 

https://github.com/bazelbuild/rules_go/blob/master/go/nogo.rst
https://github.com/kubevirt/kubevirt/blob/main/nogo_config.json
https://github.com/kubevirt/kubevirt/pull/4909
https://github.com/kubevirt/kubevirt/pull/6226
https://github.com/kubevirt/kubevirt/pull/6168
https://github.com/kubevirt/monitoring/pull/38
https://github.com/kubevirt/project-infra/issues/1211
https://github.com/kubevirt/kubevirt/blob/main/docs/updating-dependencies.md#updating-dependencies
https://github.com/kubevirt/kubevirt/blob/main/go.mod
https://github.com/kubevirt/kubevirt/tree/main/vendor
https://github.com/kubevirt/kubevirt/blob/1c1d511e406446d296bc2f16792cdc54d0ac81ad/WORKSPACE#L462
https://github.com/kubevirt/kubevirt/blob/1c1d511e406446d296bc2f16792cdc54d0ac81ad/rpm/BUILD.bazel#L38
https://github.com/kubevirt/kubevirt/blob/1c1d511e406446d296bc2f16792cdc54d0ac81ad/hack/rpm-deps.sh


 

CI/CD Status 
KubeVirt uses Prow as its CI/CD system, both for running tests on PRs and for automating 
all sorts of tasks. Deck UI is available here https://prow.ci.kubevirt.io/ and there are links on 
the PR statuses to the results of each of the test jobs. We also have public grafana 
dashboards that show several aspects of our CI infrastructure, like metrics about the merge 
queue https://grafana.ci.kubevirt.io/d/WZU1-LPGz/merge-queue?orgId=1, the failure rates of 
different lanes e2e presubmits  or the infrastructure usage 
https://grafana.ci.kubevirt.io/d/qFDyvVinx/ci-infrastructure-utilization?orgId=1 
 
We have explicit coverage metrics sent to coveralls in a Prow job, they are available here 
https://coveralls.io/github/kubevirt/kubevirt FOSSA checks, covering compliance, security 
and quality are integrated too in our CI pipeline 
https://app.fossa.io/projects/git%2Bgithub.com%2Fkubevirt%2Fkubevirt/refs/branch/master/
e740040fd9b26b8372e486b251a3fbe6f5217e82/browse/dependencies   
 
There are different levels of tests in our suite: 

●​ unit tests (some of them can be considered as integration tests given that involve 
several components), and 

●​ full end to end involving test cluster creation and execution of test cases covering 
specific product features 

 
We execute the e2e tests for the last 3 supported kubernetes versions and the cases are 
split by SIG (virtualization, network, storage and operator). We also have specific lanes that 
cover features like non-root execution, vGPU support and execution on different 
architectures, like ARM. 

Security 
KubeVirt is actively following a security in depth approach. It happens that this is also 
naturally evolving due to the nature of its architecture. 
 
At the heart of KubeVirt’s security model is the desire - and future fact - that - in the end - 
basic VMs will run as regular pods, with no elevated capabilities or privileges. 
This is not the case today, but while KubeVirt already eliminated privileged mode and almost 
all capabilities from the virt launcher pod (the pod holding the VM), this work continues at full 
steam, an important and the imminent next step is to run pods as non-root. 
 
The following article is giving an in depth overview over KubeVirt’s security model: 
https://kubevirt.io/2020/KubeVirt-Security-Fundamentals.html 

Security tradeoffs 
Initially, in order to make progress in KubeVirt, the VMI workload pods depended on running 
as root. This allowed certain feature sets to be developed quickly with the tradeoff that the 
environment launching the qemu process (not the qemu process itself) runs as root. Over 

https://github.com/kubernetes/test-infra/tree/master/prow
https://prow.ci.kubevirt.io/
https://grafana.ci.kubevirt.io/d/WZU1-LPGz/merge-queue?orgId=1
https://grafana.ci.kubevirt.io/d/Cz6zgEEGz/e2e-jobs-overview?orgId=1&refresh=2h&from=now-2d&to=now&var-job_name=pull-kubevirt-e2e-k8s-.*
https://grafana.ci.kubevirt.io/d/qFDyvVinx/ci-infrastructure-utilization?orgId=1
https://coveralls.io/github/kubevirt/kubevirt
https://app.fossa.io/projects/git%2Bgithub.com%2Fkubevirt%2Fkubevirt/refs/branch/master/e740040fd9b26b8372e486b251a3fbe6f5217e82/browse/dependencies
https://app.fossa.io/projects/git%2Bgithub.com%2Fkubevirt%2Fkubevirt/refs/branch/master/e740040fd9b26b8372e486b251a3fbe6f5217e82/browse/dependencies
https://github.com/kubevirt/kubevirt/pull/6041
https://github.com/kubevirt/kubevirt/pull/6041
https://kubevirt.io/2020/KubeVirt-Security-Fundamentals.html


 

time the root dependencies have been reduced to the point where we’ve created a path that 
completely removes the dependency on root. This non-root VMI pod feature is still being 
stabilised, but it will become the de facto standard for all KubeVirt deployments in a future 
release. 

Supply chain security 
The following aspects of supply chain security are addressed: 
 

●​ Tracking dependencies 
○​ Golang: go.mod/go.sum files which is the base for our vendor folder. CI 

ensures on every PR that the vendor folder is in sync with go.mod, to avoid 
that stuff gets sneaked into the vendor folder. 

○​ RPM: Dependencies for all architectures (arm64 and x86_64) are tracked in 
rpm/BUILD.bazel. We track the origin as well as the checksum. On every PR 
all referenced RPMs are validated. RPM dependencies are bumped 
periodically and on-demand. This includes checksum verification as well as 
verifying GPG signatures. 

○​ KubeVirt artifacts are built from golang and RPM dependencies tracked like 
described above. In addition a small set of extra dependencies are part of the 
build, which are tracked with origin and checksum in our WORKSPACE file. 
Containers (except for some testing containers) are completely built from 
scratch where RPMs need to be installed, or based on googles distroless 
containers. 

○​ For building KubeVirt, bazel is used. There we almost exclusively rely on 
libraries written and maintained by google. A small set of additional 
extensions is used. These extensions are tracked with checksum and location 
and do not auto-update. 

○​ TODO: registries like quay.io can not scan our containers for all included 
dependencies which may delay detecting CVEs. An attempt from Roman 
Mohr is going on to improve that: https://github.com/quay/claircore/issues/488 

●​ Ensuring availability of dependencies 
○​ KubeVirt builds are reproducible. One of the advantages of reproducible 

builds is full dependency tracking. 
○​ Golang dependencies are vendored from our go.mod/go.sum files and 

checked in in our VCS. 
○​ If dependencies are modified, pass our CI checks (see above) and the 

modifications get merged, a periodic CI job goes through all our tracked 
dependencies (except golang where we directly vendor), uploads it to the 
projects GCS bucket and creates a PR where the GCS bucket is added as a 
mirror location for all new dependencies. 

●​ Developer Security 
○​ KubeVirt only accepts members which have 2FA on GitHub enabled. This 

also includes our bot accounts, where the CI team has shared credentials, but 
each member has an individual device for the second authentication step. 

https://github.com/quay/claircore/issues/488


 

○​ Releases tags are signed 
(https://github.com/kubevirt/kubevirt/releases/tag/v0.49.0) 

○​ Git and Github are used for code tracking 
○​ Our CI system ensures that main and release branches do not allow direct 

push. Only PRs are allowed. 
○​ TODO: Tracking golang CVEs more directly visible for the broad community 

could be improved. A lot of this happens right now inside Red Hat and 
bubbles up to the community. CVEs on used libraries are addressed mostly 
this way. 

 

Roadmap 
○​ Can be accomplished now:  

■​ Stable API - v1 released 
■​ Accelerate compute intensive workloads (GPU access to single VM) 
■​ Non disruptive updates of the KubeVirt operator (zero downtime, live) 
■​ CPU pinning support and NUMA Topology passthrough 
■​ More robust Live-Migration support 
■​ Data protection with Offline and online disk snapshots 
■​ SR-IOV support for high performance networking 
■​ Improved operations with runbooks and enhanced observability 
■​ Multus support for multiple network interfaces attached to Virtual Machines 
■​ Declarative host network configuration 

 
○​ Can be accomplished with reasonable additional effort (and are ideally already 

on the project roadmap):  
○​ Backup / Recovery & DR with Velero 
○​ Additional support for very large VMs - e.g. 3TB+ memory 
○​ Further scale out testing of KubeVirt API 
○​ More advanced virtualization configurations - e.g. CPU NUMA topology 
○​ Advanced security enhancements - e.g. increased workload isolation with 

non-root VMI Pods 
○​ VM import/export file format and API 

 
○​ Are in-scope but beyond the current roadmap for the next six months: 

○​ Optimising cost efficiency through GPU sharing via vGPU 
○​ Improved ArgoCD templating for VMs in a Tekton Pipeline 

 
○​ Areas out of scope:  

○​ Enabling any other workload than VMs 
○​ VDI Streaming solution for seamless desktop access 

https://github.com/kubevirt/kubevirt/releases/tag/v0.49.0
https://drive.google.com/file/d/16Wy8s-uCr_B6GdQgWBB1_EIX2awUTFDu/view?usp=sharing
https://github.com/kubevirt/kubevirt/pull/5846
https://drive.google.com/file/d/1DeCgnDF4aFFMq3tVeWtrO5LuxbjMYPo2/view?usp=sharing
https://github.com/kubevirt/monitoring
https://kubevirt.io/2020/Multiple-Network-Attachments-with-bridge-CNI.html


 

Project 
●​ Do we believe this is a growing, thriving project with committed contributors? 

​ Yes. While Red Hat remains a core contributor according to the numbers, several 
larger organisations have picked up KubeVirt, putting it in the best spot to see more external 
contributions. 
 

●​ Is it aligned with CNCF's values and mission? 
​ Absolutely. Following cloud native principles and aiming for the right integration into 
the ecosystem are key pillars of the project. 
 

●​ Do we believe it could eventually meet the graduation criteria? 
​ Yes 
 

●​ Should it start at the sandbox level or incubation level? 
​ KubeVirt is at the Sandbox level, and is looking to move to Incubation. 

 
●​ Does the project have a sound, documented process for source control, issue 

tracking, release management etc. 
​ KubeVirt has adopted the “GitHub Flow” for source control 
 

●​ Does it have a documented process for adding committers? 
​ Yes, it’s part of the membership policy. 
 

●​ What is the general quality of informal communication around the project 
(slack, github issues, PR reviews, technical blog posts, etc)? 
The project tries to find the balance between to many channels of communication - to 

avoid communication fragmentation - but at the same time offer enough different channels to 
reach different audiences. 

Existing communication channels 
●​ Forum / Mailinglist - https://groups.google.com/g/kubevirt-dev 
●​ Slack channel for developers - #kubevirt-dev 
●​ Slack channel for users - #virtualization 

Governance 
Project is self-governing: 

●​ Governance 
●​ Membership Policy/Contributor Ladder 

 
As a small project with tightly coupled components, Kubevirt has adopted a simple 
"maintainer council" style governance system, based on the templates supplied by 
TAG-Contributor-Strategy.   

https://github.com/kubevirt/community/blob/main/membership_policy.md
https://groups.google.com/g/kubevirt-dev
https://github.com/kubevirt/community/pull/123
https://github.com/kubevirt/community/blob/master/membership_policy.md


 

The current maintainers are: 

Name Employer 

David Vossel Red Hat 

Vladik Romanovsky Red Hat 

Roman Mohr Red Hat 

Fabian Deutsch Red Hat 

Stu Gott Red Hat 

Vasiliy Ulyanov SUSE 

Chris Calligari NASA 

Ryan Hallisey Nvidia 

Federico Gimenez 
 
Zvi Cahana 

Red Hat 
 
IBM 

 

We are in the process of also building a robust set of working groups with their own leads, 
both as an engine of growth and as a way of recognizing and promoting additional 
leadership in the community.  To date, three of the working groups have leadership 
independent of the maintainer council, and we plan to eventually have five to six. 

Contributions 
●​ How much time does the core team commit to the project? 

The core team (maintainers, but also other regular contributors) are usually working 
full time on KubeVirt. 

 
●​ How big is the team? Who funds them? Why? How much? For how long? 

There are approximately 70 contributors to the KubeVirt project with over 100 
commits over the course of the last year. About 54 (according to the CNCF devstats) 
of the 100 contributors of last year are Red Hat employees and are funded by Red 
Hat. Red Hat, like other vendors contributing to KubeVirt, has an interest in 
maintaining funding of engineering contributions to KubeVirt to enhance its 
productized version of the Open Source project.  
 
There are also regular contributions from other well known adopters - including end 
users and vendors - like SuSE, Apple, and Google.  This has been increasing on its 
own over the last year as more organisations adopt the technology.  Additionally, we 

https://github.com/kubevirt/community/blob/main/MAINTAINERS.md
https://github.com/davidvossel
https://github.com/vladikr
https://github.com/rmohr
https://github.com/fabiand
https://github.com/stu-gott
https://github.com/vasiliy-ul
https://github.com/mazzystr
https://github.com/rthallisey
https://github.com/fgimenez
https://github.com/zcahana
https://kubevirt.devstats.cncf.io/d/66/developer-activity-counts-by-companies?orgId=1&var-period_name=Last%20year&var-metric=contributions&var-repogroup_name=All&var-country_name=All&var-companies=All


 

are building working groups to allow more contributors to show leadership in the 
project as well as increasing their contributions.  Our maintainers have also been 
mentoring some non-Red Hat contributors one-on-one with a target of raising them to 
core contributor status. 
 

●​ Who are the clear leaders? Are there any areas lacking clear leadership? 
Testing? Release? Documentation? These roles sometimes go unfilled. 

○​ Code: The Approvers 
■​ And sub-project owners - like i.e. CDI, knmstate 

○​ Testing: Daniel Hiller, Red Hat, Roman Mohr, Red Hat 
○​ Release: David Vossel, Red Hat 
○​ Community: , Red Hat and David Vossel, Red Hat Fabian Deutsch
○​ Scale: Ryan Hallisey, NVIDIA 

​  
●​ What is the rate of ongoing contributions to the project (typically in the form of 

merged commits). 
There is a positive trend of contributions: 

 
Have a healthy number of committers. A committer is defined as someone with the 
commit bit; i.e., someone who can accept contributions to some or all of the project. 
 
https://kubevirt.devstats.cncf.io/d/56/company-commits-table?orgId=1&from=now-2y&to=no
w 
In addition to committers from vendor organisations such Red Hat, IBM, SUSE, Giant Swarm  
- there have been numerous contributions from End User Committers from Amadeus, Apple, 
Uber, Erickson, Fujitsu, NEC, NVIDIA, and others. 
 
https://github.com/kubevirt/kubevirt/graphs/contributors 

mailto:fabiand@redhat.com
https://github.com/kubevirt/kubevirt/blob/main/OWNERS_ALIASES#L4-L16
https://kubevirt.devstats.cncf.io/d/74/contributions-chart?orgId=1&from=now-5y&to=now
https://kubevirt.devstats.cncf.io/d/56/company-commits-table?orgId=1&from=now-2y&to=now
https://kubevirt.devstats.cncf.io/d/56/company-commits-table?orgId=1&from=now-2y&to=now
https://github.com/kubevirt/kubevirt/graphs/contributors


 

 
 
 
 Demonstrate a substantial ongoing flow of commits and merged contributions. 
 
For the last year, KubeVirt has averaged more than 350 merged PRs per month from more 
than 60 contributors. Of those, 10-20 per month come from new contributors, showing 
ongoing interest in joining the project. 
 
The KubeVirt project has core maintainers from SUSE, NVIDIA and Red Hat. The KubeVirt 
community would like to focus on increasing the maintainer diversity during incubation to 
increase the project health and build an even stronger community. Even though the 
maintainers are represented by 3 companies, the project community itself has had individual 
contributions from over 68 companies over the last 4 years. Source: 
https://kubevirt.devstats.cncf.io/d/56/company-commits-table?orgId=1 
 

Community 
●​ Besides the core team, how active is the surrounding community? Bug 

reports? Assistance to newcomers? Blog posts etc. 
○​ Newcomer onboarding: We give new people the opportunity to introduce 

themselves and talk about what brought them to us.  Community team has a 
well written README that explains how to contribute new material to the 
website and user-guide.  Once a week, maintainers spend 30-60 mins with 
someone helping them to get started with non-code base contributions. 

○​ Blogs: The community receives about one blog entry per month. 
○​ Twitter: https://twitter.com/kubevirt with 1,965 followers. 
○​ Events: We have a weekly community contribution meeting whose 

attendance varies.  We also have an annual Kubevirt Summit, currently 
online, which draws around 200 attendees, most of whom are contributors.  
The project is also starting to participate as a group in third-party events and 
conferences, such as Kubecon, All Things Open, and various meetups. 

○​ GitHub Issues and Pulls: 
■​ Metrics are detailed in devstats 
■​ For the last year, KubeVirt has averaged more than 350 merged PRs 

per month from more than 60 contributors.  
■​ Of those, 10-20 per month come from new contributors, showing 

ongoing interest in joining the project. Kube 

https://kubevirt.devstats.cncf.io/d/74/contributions-chart?orgId=1&var-period=m&var-metric=mergedprs&var-repogroup_name=All&var-country_name=All&var-company_name=All&var-company=all
https://kubevirt.devstats.cncf.io/d/14/new-and-episodic-pr-contributors?orgId=1&from=now-1y&to=now-1w&var-period=m&var-repogroup_name=All
https://kubevirt.devstats.cncf.io/d/56/company-commits-table?orgId=1
https://twitter.com/kubevirt
https://kubevirt.io/summit/
https://kubevirt.devstats.cncf.io/d/74/contributions-chart?orgId=1&var-period=m&var-metric=mergedprs&var-repogroup_name=All&var-country_name=All&var-company_name=All&var-company=all
https://kubevirt.devstats.cncf.io/d/74/contributions-chart?orgId=1&var-period=m&var-metric=mergedprs&var-repogroup_name=All&var-country_name=All&var-company_name=All&var-company=all
https://kubevirt.devstats.cncf.io/d/14/new-and-episodic-pr-contributors?orgId=1&from=now-1y&to=now-1w&var-period=m&var-repogroup_name=All


 

■​ KubeVirt average Issue age has shown a drastic decrease over the 
last year 

●​ Are there any especially difficult personalities to deal with? How is this done? 
Is it a problem? 

​ There are seasoned members in the group which are usually trying to moderate 
these conflicts outside of the primary communication channels.  We have not had any 
serious issues with project conflicts to date. 
 

Adoption 
●​ Who uses the project? Get a few in-depth references from 2-4 of them who 

actually know and understand it. 
○​ SUSE - SUSE believes KubeVirt is the best open source way to handle 

Virtual Machines on Kubernetes today. We offer this additional possibility to 
our customers by leveraging KubeVirt in our products. 

○​ KUBERMATIC - As a distributor KUBERMATIC runs KubeVirt to enable VM 
workload on Kubermatic Virtualization. 

○​ H3C - H3C distributes KubeVirt as part of CloudOS to enable VM workloads 
on Kubernetes at customer sites. 

○​ NVIDIA - NVIDIA's latest computing platform is built on open-source projects 
like Kubernetes and KubeVirt to power products like GeForce NOW with more 
to come. 

○​ CoreWeave - A Kubernetes native cloud provider with focus on GPUs at 
scale. KubeVirt allows us to co-locate non-containerizable workloads such as 
Virtual Desktops next to compute intensive containers executing on bare 
metal. All orchestrated via the Kubernetes API leveraging the same network 
policies and persistent volumes for both VM and containerized workloads. 

○​ CIVO - CIVO uses KubeVirt as part of their stack to enable tenant cluster 
provisioning within Civo cloud. 

 
●​ What do real users consider to be its strengths and weaknesses? Any concrete 

examples of these? 
 

●​ A very concrete weakness is our kubevirt/client-go repository. We do not yet 
offer the api definition alone which one can use with client-gen. People are 
repeatedly struggling with updating the dependencies in their projects where 
they make use of kubevirt/client-go. Update Feb. 1 2022: This is mostly 
resolved with the introduction of kubevirt/api which can be used with k8s 
code generators. 
-Roman Mohr/ Red Hat 

●​ Strengths - I think the folks that participate in the community are high quality - 
it's a well of technical expertise, creativity, and openness. People are always 
interested to discuss new use cases, while also staying well grounded on the 
core principles that make up KubeVirt and Kubernetes. 

https://kubevirt.devstats.cncf.io/d/11/issues-age-by-repository-group?orgId=1
https://www.nvidia.com/en-us/geforce-now/


 

Weaknesses - Something I find KubeVirt struggles with, which isn't very 
different from many growing open source projects, is more contributions from 
users.  As a user myself, I want to hear how other people are solving their 
problems.  Right now, I hear about how users are using KubeVirt but don't 
always see them working on it. 
-Ryan Hallisey / NVIDIA 

●​ From our perspective KubeVirt provides good flexibility to allow downstream 
customization. It seamlessly integrates into k8s ecosystem and supports 
many virtualization features out of the box. It is well maintained by the 
upstream community promoting collaboration and contributions. [re cons] 
Cannot really think of concrete weakness examples now. Usually we try to 
workaround or to upstream fixes whenever we encounter issues. Though 
nothing really serious so far. 
- Vasiliy Ulyanov / Software Engineer, SUSE Labs Core  

​  
●​ Perception vs Reality: Is there lots of buzz, but the software is 

flaky/untested/unused? Does it have a bad reputation for some flaw that has 
already been addressed? 
 
KubeVirt has been adopted by end-users and vendors in production environments, 
The rate at and the scale of this adoption is not reflected in their presence in the 
project itself. Thus adopters tend to be silent about their adoption, yet file bugs and 
request features. 
By looking at the numbers it is clear that Red Hat is the top contributor to the project, 
but this number is not reflecting the adoption of the project by other vendors. Our 
conclusion is that KubeVirt is stable and feature rich enough to meet most adopters' 
demands, not requiring them to step up to close many gaps. 
There are examples of large adopters stepping up to close smaller or larger gaps as 
well as proposing large architectural changes (ARM presenting KubeVirt with Xen 
hypervisor).​  

Context 
●​ What is the origin and history of the project? 

​ Kubernetes 1.0 got released. “Wow, it’s a scheduler for compute workloads. As VMs 
are also compute workloads, can’t we leverage it for VMs as well? Oh and hey - why would 
you want to have two schedulers in the end if one can rule them all?” 
 

●​ Where does it fit in the market and technical ecosystem? 
​ Just like the CNCF, the KubeVirt project assumes that containers and cloud native 
principles are here to stay and to solve many new and old problems. However, there will be 
workloads which can not be moved to containers for technical or non-technical reasons. 
These workloads will remain important, but require operators to maintain a separate stack 
for operating these workloads. 

https://github.com/kubevirt/kubevirt/pull/929
https://github.com/kubevirt/kubevirt/pull/5728


 

KubeVirt is solving this problem, by enabling Kubernetes - the state of the are cloud native 
platform - to run these legacy workloads as well, reducing the large burden from operators to 
maintain two stacks (one each for contains and VMs). 
 

●​ Is it growing or shrinking in that space? Is that space growing or shrinking? 
​ Growing, both as a project and as a need. More people adopt containers, and more 
organisations are faced with the question what to do with their crucial legacy workloads. 
KubeVirt has also become the default solution for running general VMs on Kubernetes. Two 
years ago, it was one of several competing solutions. 
 

●​ How necessary is it? What do people who don't use this project do? Why 
exactly is that not adequate, and in what situations? 

​ Organisations can stick to existing VM platforms for running VMs, this has the main 
drawbacks that two platforms have to be operated. At the same time organisations get under 
pressure, because vendors are moving to new container systems, and sometimes 
discontinue VM management platforms, leaving the  
 

●​ Clearly compare and contrast with peers in this space. A summary 
matrix often helps. Beware of comparisons that are too superficial to be 
useful, or might have been manipulated so as to favour some projects 
over others. Most balanced comparisons will include both strengths and 
weaknesses, require significant detailed research, and usually there is 
no hands-down winner. Be suspicious if there appears to be one. 

 

Project Workload Focus Status Contrast 

KubeVirt VM VMs in a cloud native world - Dedicated API, 
many Virt features, 
without pod API 
clashes 
- K8s workloads 
controllers can not 
be natively reused 
i.e. deployments or 
DS 

 

virtlet VM Running VMs with a POD API 
i.e. for stateless apps using CRI 

- Almost 
abandoned 
- Clashes between 
VM and pod 
functionality (i.e. 
live migration) 

Pod API was 
preferred over a 
dedicated 
virtualization API. 
This prevents 
having full control 
over the 
virtualization stack. 
Benefit is that VMs 
can be controlled 
and defined like 
VMs. 

Rancher VM VM Thin wrapper around qemu Renamed to 
Harvester and now 
using KubeVirt 

 

Kata Pod Pod isolation for container - Can use KVM No competition, as 

https://github.com/Mirantis/virtlet
https://github.com/rancher/vm
https://katacontainers.io/


 

reasons - Active community the focus is to 
increase pod 
security, not to 
manage VMs 

gVisor Container Container isolation for security 
reasons 

- Can use KVM 
- Active community 

Firecracker Container Container isolation for security 
reasons 

- Uses KVM 

 

https://github.com/google/gvisor
https://github.com/firecracker-microvm/firecracker

	KubeVirt Incubation Due Diligence 
	Introduction 
	Project Description 
	CNCF Mission & Principles 
	Project Overview Presentation 

	Incubation Criteria Summary 
	Technical 
	Architectural Overview 
	Usability tradeoffs 

	Cloud Native Use Cases 
	Progress since CNCF Sandbox Status 
	Performance and Scalability 
	Performance Goals and Achievements 
	Compute performance 
	Network performance 
	Complexity/reliability tradeoffs 
	Integration/Performance tradeoffs 

	Scalability Goals and Achievements 
	Performance/scalability tradeoffs 

	High Availability 
	Control Plane 
	Workloads 

	Coding Standards and Quality 
	Code Quality 
	Dependencies 

	CI/CD Status 

	Security 
	Security tradeoffs 
	Supply chain security 

	Roadmap 

	Project 
	Governance 
	Contributions 
	Community 

	Adoption 
	Context 

