Module 2

Module II: CPU and Register Transfer Operations: (6 Hours)

Instruction Codes, Computer Registers, Computer Instructions, Register Transfer Language, Timing and
Control, Instruction Cycle, Memory, Input-Output and Interrupt Reference Instructions, Signed multiplication,
Booth's algorithm. Division of integers: Restoring and non-restoring division Floating point arithmetic:
Addition, subtraction.

Instruction Codes -

Instruction codes are binary representations of instructions that the CPU understands and
executes. Each instruction in a computer program corresponds to a unique code, often
composed of several fields:

Instruction Format

An instruction is typically divided into fields, including:

e Opcode (Operation Code): This specifies the operation to be performed (eg.
ADD, SUB, MOV, etc). The length of the opcode varies depending on the
instruction set architecture (ISA).

e Operand(s): These are the data or addresses on which the operation is
performed. Operands can be registers, memory locations, or immediate values.

e Addressing Mode (optional): This specifies how the operand is to be located.
Common addressing modes are Immediate, Direct, Indirect, Indexed, and Regjister.

Instruction Formats

A computer will usually have a variety of instruction code formats. It is the function
of the control unit within the CPU to interpret each instruction code and provide the
necessary control functions needed to process the instruction.

The format of an instruction is usually depicted in a rectangular box symbolizing the bits
of the instruction as they appear in memory words or in a control register. The bits of the
instruction are divided into groups called fields. The most common fields found in instruction
formats are:

Common Fields in Instruction Format:

The most common fields found in an instruction format include:

1. Operation Code (Opcode): Specifies the operation to be performed.
2. Address Field: Designates a memory address or a processor register.
3. Mode Field: Specifies the way the operand or the effective address is determined.

Other special fields are sometimes employed under certain circumstances, as for example a
field that gives the number of shifts in a shift-type instruction.

The operation code field of an instruction is a group of bits that define various processor
operations, such as add, subtract, complement, and shift. The bits that define the mode field
of an instruction code specify a variety of alternatives for choosing the operands from the
given address.

Operations specified by computer instructions are executed on some data stored in
memory or processor registers, Operands residing in processor registers are specified with a
register address. A register address is a binary number of k bits that defines one of 2k
registers in the CPU. Thus a CPU with 16 processor registers RO through R15 will have a register
address field of four bits. The binary numiber 0101, for example, will designate register RS.

Computers may have instructions of several different lengths containing varying number
of addresses. The number of address fields in the instruction format of a computer depends
on the infernal organization of its registers. Most computers fall into one of three types of CPU
organizations:

1. Single Accumulator Organization: Uses an accumulator (AC) register for
computations.
o Example: ADD X = AC « AC + MIX]
2. General Register Organization: Uses multiple general-purpose registers.
o] Exomple: ADDRI,R2,R3 2 Rl ¢« R2 +R3
3. Stack Organization: Uses an implicit stack for operations.
o Example: PUSH X

All operations are performed with an implied accumulator register. The instruction
format in this type of computer uses one address field. For example, the instruction that
specifies an arithmetic addition is defined by an assembly language instruction as ADD.

Where X is the address of the operand. The ADD instruction in this case results in the
operafion AC ¢« AC + MIXI. AC is the accumulator register and MIX] symbolizes the
memory word located at address X.

The instruction format in this type of computer needs three register address fields.
Thus the instruction for an arithmetic addition may be written in an assembly language as

ADDRI, R2, R3

To denote the operation Rl ¢« R2 + R3. The number of address fields in the instruction
can be reduced from three to two if the destination register is the same as one of the
source registers. Thus the instruction

ADD R1, R2

Would denote the operation Rl < Rl + R2. Only register addresses for Rl and R2 need
be specified in this instruction.

Computers with multiple processor registers use the move instruction with a
mnemonic MOV to symbolize a transfer instruction. Thus the instruction

MOV RI, R2

Denotes the transfer Rl < R2 (or R2 « RI, depending on the particular computer). Thus
transfer-type instructions need two address fields to specify the source and the destination.
General register-type computers employ two or three address fields in their instruction
format. Each address field may specify a processor register or a memory word. An instruction
symbolized by

ADDRI, X

Would specify the operation Rl < R + M [XI. It has two address fields, one for register Rl
and the other for the memory address X.

Computers with stack organization would have PUSH and POP instructions which
require an address field. Thus the instruction

PUSH X

Will push the word at address X to the top of the stack. The stack pointer is updated
automatically. Operation-type instructions do not need an address field in stack-organized
computers. This is because the operation is performed on the two items that are on top of
the stack. The instruction ADD in a stack computer consists of an operation code only with no
address field. This operation has the effect of popping the two top numbers from the stack,
adding the numbers, and pushing the sum info the stack. There is no need to specify
operands with an address field since all operands are implied to be in the stack.

To illustrate the influence of the number of addresses on computer programs, we will
evaluate the arithmetic statement X = (A + B) * (C + D).

Using zero, one, two, or three address instruction. We will use the symbols ADD, SUB,
MUL, and DIV for the four arithmetic operations; MOV for the transfer-type operation;
and LOAD and STORE for transfers to and from memory and AC register. We will assume

that the operands are in memory addresses A, B, C, and D, and the result must be stored
in memory at address X.

Types of Instruction Formats
. Three-Address Instruction Format

Computers with three-address instruction formats can use each address field to specify either a
processor register or a memory operand. The program in assembly language that evaluates X =
(A + B) * (C + D) is shown below, together with comments that explain the register transfer
operation of each instruction.

e Uses three addresses for operands and resulfs.
e Each address field can specify a processor register or memory operand.

Example:
ADDRI, A, BRI < MIA] + MIB]

ADDR2,C,D R2 < MICI+ MID]
MUL X, R1,R2 MI[X] ¢« R1*R2

It is assumed that the computer has two processor registers, Rl and R2. The symbol M
[A] denotes the operand at memory address symbolized by A.

The advantage of the three-address format is that it results in short programs when
evaluating arithmetic expressions. The disadvantage is that the binary-coded instructions
require too many bits to specify three addresses. An example of a commercial computer that
uses three-address instructions is the Cyber 170. The instruction formats in the Cyber
computer are restricted to either three register address fields or two register address fields
and one memory address field.

Advantages:

e Resulfs in shorter programs for arithmetic expressions.
Disadvantages:

e Requires alarge number of bits to encode three addresses.

2. Two-Address Instruction Format

Two address instructions are the most common in commercial computers. Here again each
address field can specify either a processor register or a memory word. The program to evaluate
X = (A +B)* (C+D)is as follows:

e Most common in commercial computers.
e Each address field can specify a processor register or a memory word.

Example:

MOV RI, A = Rl « M[A]
ADDRI, B = Rl <RI+ MI[B]
MOV R2, C » R2 « MIC]
ADDR2,D = R2 «R2 + MID]
MULRI, R2 > RI < R1*R2
MOV X, Rl = MIX] <RI

The MOV instruction moves or transfers the operands to and from memory and
processor registers. The first symbol listed in an instruction is assumed to be both a source
and the destination where the result of the operation is transferred.

3. One-Address Instruction Format

One-address instructions use an implied accumulator (AC) register for all data manipulation. For
multiplication and division there is a need for a second register. However, here we will neglect the
second and assume that the AC contains the result of tall operations. The program to evaluate X
=(A+B)*(C+D)is

LOAD A - AC « MIA]
ADDB - AC « AC + MBI
STORET - MIT] < AC
LOADC - AC « MIC]
ADDD - AC < AC + M[D]
MULT = AC < AC* M[TI]
STORE X - M[X] < AC

All operations are done between the AC register and a memory operand. T is the address of
a femporary memory location required for storing the intermediate result.

4. Zero-Address Instruction Format

A stack-organized computer does not use an address field for the instructions ADD and MUL.
The PUSH and POP instructions, however, need an address field to specify the operand that
communicates with the stack. The following program shows how X = (A + B) * (C + D) will be
written for a stack organized computer. (TOS stands for top of stack)

PUSHA - TOS < A

PUSHB - TOS «B

ADD ~>TOS « (A +B)
PUSHC > TOS<«C

PUSHD - TOS <D

ADD ->TOS <« (C+D)

MUL ->TOS«<(C+D)*(A+B)
POP X - MIX]« TOS

To evaluate arithmetic expressions in a stack computer, it is necessary to convert the expression
into reverse Polish notation. The name "zero-address" is given to this type of computer because of
the absence of an address field in the computational instructions.

Summary of Instruction Formats

Format Address Fields Example

Three-Addre 3

ADDRI, A B
ss
Two-Address 2 ADDRI, B
One-Address 1 ADD B (AC implicit)
Zero-Address O ADD (stack-based)

This classification of instruction formats helps in understanding how different CPU
architectures handle instruction execution efficiently.

Instruction Codes

A set of instructions that specify the operations, operands, and the sequence by which
processing has to occur. An instruction code is a group of bits that tells the computer to
perform a specific operation part.

Format of Instruction

The format of an instruction is depicted in a rectangular box symbolizing the bits of an
instruction. Basic fields of an instruction format are given below:

1. An operation code field that specifies the operation to be performed.

2. An address field that designates the memory address or register.

3. A mode field that specifies the way the operand of effective address is determined.

Computers may have instructions of different lengths contfaining varying number of
addresses. The number of address field in the instruction format depends upon the internal
organization of its registers.

Addressing Modes

To understand the various addressing modes to be presented in this section, it is imperative
that we understand the basic operation cycle of the computer. The contfrol unit of a
computer is designed fo go through an instruction cycle that is divided into three major
phases:

1. Fetch the instruction from memory

2. Decode the instruction.

3. Execute the instruction.

There is one register in the computer called the program counter of PC that keeps track of
the instructions in the program stored in memory. PC holds the address of the instruction to
be executed next and is incremented each time an instruction is fetched from memory. The
decoding done in step 2 determines the operation to be performed, the addressing mode of
the instruction and the location of the operands. The computer then executes the instruction
and returns to step 1 to fetch the next instruction in sequence.

In some computers the addressing mode of the instruction is specified with a distinct binary
code, just like the operation code is specified. Other computers use a single binary code that
designates both the operation and the mode of the instruction. Instructions may be defined
with a variety of addressing modes, and sometimes, two or more addressing modes are
combined in one instruction.

1. The operation code specified the operation to be performed. The mode field is sued to
locate the operands needed for the operation. There may or may not be an address field in
the instruction. If there is an address field, it may designate a memory address or a processor

register. Moreover, as discussed in the preceding section, the instruction may have more than
one address field, and each address field may be associated with its own particular
addressing mode.

Although most addressing modes modify the address field of the instruction, there are two
modes that need no address field at all. These are the implied and immediate modes.

1 Implied Mode: In this mode the operands are specified implicitly in the definition of the
instruction. For example, the instruction "complement accumulator” is an implied-mode
instruction because the operand in the accumulator register is implied in the definition of the
instruction. In fact, all register reference instructions that sue an accumulator are
implied-mode instructions.

Opcode Mode Address
Instructions since the operands are implied to be on top of the stack.

2 Immediate Mode: In this mode the operand is specified in the instruction itself. In other
words, an immediate- mode instruction has an operand field rather than an address field.
The operand field contains the actual operand o be used in conjunction with the operation
specified in the instruction. Immediate-mode instructions are useful for initializing registers to
a constant value.

It was mentioned previously that the address field of an instruction may specify either a
memory word or a processor register. When the address field specifies a processor register,
the instruction is said to be in the register mode.

3 Register Mode: In this mode the operands are in registers that reside within the CPU. The
particular register is selected from a register field in the instruction. A k-bit field can specify
any one of 2k registers.

4 Register Indirect Mode: In this mode the instruction specifies a register in the CPUwhose
contents give the address of the operand in memory. In other words, the selected register
contains the address of the operand rather than the operand itself. Before using a register
indirect mode instruction, the programmer must ensure that the memory address fo the
operand is placed in the processor register with a previous instruction. A reference to the
register is then equivalent to specifying a memory address. The advantage of a register
indirect mode instruction is that the address field of the instruction sues fewer bits to select a
register than would have been required to specify a memory address directly.

5 Auto increment or Auto decrement Mode: This is similar to the register indirect
modeexcept that the register is incremented or decremented after (or before) its value is
used to access memory. When the address stored in the register refers to a table of data in
memory, it is necessary to increment or decrement the register after every access to the
table. This can be achieved by using the increment or decrement instruction. However,
because it is such a common requirement, some computers incorporate a special mode that
automatically increments or decrements the content of the register after data access.

The address field of an instruction is used by the control unit in the CPU to obtain the operand
from memory. Sometimes the value given in the address field is the address of the operand,
but sometimes it is just an address from which the address of the operand is calculated. To
differentiate among the various addressing modes it is necessary to distinguish between the
address part of the instruction and the effective address used by the control when executing
the instruction. The effective address is defined to be the memory address obtained from the
computation dictated by the given addressing mode. The effective address is the address of
the operand in a computational-type instruction. It is the address where control branches in
response to a branch-type instruction. We have already defined two addressing modes in
previous chapter.

6 Direct Address Mode: In this mode the effective address is equal to the address part of the
instruction. The operand resides in memory and its address is given directly by the address
field of the instruction. In a branch-type instruction the address field specifies the actual
branch address.

7 Indirect Address Mode: In this mode the address field of the instruction gives theaddress
where the effective address is stored in memory. Confrol fetches the instruction from
memory and uses its address part to access memory again to read the effective address.

8 Relative Address Mode: In this mode the content of the program counter is added to
theaddress part of the instruction in order to obtain the effective address. The address part
of the instruction is usually a signed number (in 2's complement representation) which can be
either positive or negative. When this numiber is added to the content of the program counter,
the result produces an effective address whose position in memory is relative to the address
of the next instruction. To clarify with an example, assume that the program counter contains
the number 825 and the address part of the instruction contains the number 24. The
instruction at location 825 is read from memory during the fetch phase and the program
counter is then incremented by one to 826 + 24 = 850. This is 24 memory locations forward
from the address of the next instruction. Relative addressing is often used with branch-type
instructions when the branch address is in the area surrounding the instruction word itself. It

results in a shorter address field in the instruction format since the relative address can be
specified with a smaller number of bits compared to the number of bits required to
designate the entire memory address.

9 Indexed Addressing Mode: In this mode the content of an index register is added to
theaddress part of the instruction to obtain the effective address. The index register is a
special CPU register that contains an index value. The address field of the instruction defines
the beginning address of a data array in memory. Each operand in the array is stored in
memory relative to the beginning address. The distance between the beginning address and
the address of the operand is the index value stores in the index register. Any operand in the
array can be accessed with the same instruction provided that the

index register contains the correct index value. The index register can be incremented to
facilitate access to consecutive operands. Note that if an index-type instruction does not
include an address field in its format, the instruction converts to the register indirect mode of
operation. Some computers dedicate one CPU register to function solely as an index register.
This register is involved implicitly when the index-mode instruction is used. In computers with
many processor registers, any one of the CPU registers can contain the index number. In such
a case the register must be specified explicitly in a register field within the instruction format.

10 Base Register Addressing Mode: In this mode the content of a base register is added
tothe address part of the instruction to obtain the effective address. This is similar to the
indexed addressing mode except that the register is now called a base register instead of an
index register. The difference between the two modes is in the way they are used rather than
in the way that they are computed. An index register is assumed to hold an index number
that is relative to the address part of the instruction. A base register is assumed to hold a
base address and the address field of the instruction gives a displacement relative to this
base address. The base register addressing mode is used in computers to facilitate the
relocation of programs in memory. When programs and data are moved from one segment
of memory to another, as required in multiprogramming systems, the address values of the
base register requires updating to reflect the beginning of a new memory segment.

Numerical Example-

PC =200

R1 =400

AR =100

AC

Address

200
201
202

399
400

00

600

702

ROO

Mermory

Load o AC

Mode

Address = 500

Mext instruction

450

700

800

325

300

Figure 8-7 Numerical example for addressing modes.

TABLE 8-4 Tabular List of Numerical Example

Addressing Effective Content
Mode Address of AC
Direct address 500 800
Immediate operand 201 500
Indirect address 800 300
Relative address 702 325
Indexed address 600 900
Repgister — 400
Register indirect 400 700
Autoincrement 400 700
Autodecrement 399 450

Computer Registers

1 Data Register(DR) : hold the operand(Data) read fromm memory
1 Accumulator Register(AC) : general purpose processing register

1 Instruction Register(IR) : hold the instruction read from memory
"1 Temporary Register(TR) : hold a temporary data during processing
1 Address Register(AR) : hold a memory address, 12 bit width

1 Program Counter(PC) :

»hold the address of the next instruction to be read from memory after the current
instruction is executed

»Instruction words are read and executed in sequence unless a branch instruction is
encountered

»A branch instruction calls for a transfer to a nonconsecutive instruction in the program

»The address part of a branch instruction is transferred to PC to become the address of the
next instruction

Input Register(INPR) : receive an 8-bit character from an input device

1 Output Register(OUTR) : hold an 8-bit character for an output device

The following registers are used in Mano's example computer.

Eegister Number, Eegister Eegister

svmbel of bits name Function

DE 16 Data register Holds memeory operands
AR 12 Address register Holds address for memory
AC 16 Aceumulator Processor register

IR 16 Inshuction remster Holds instruchion code

BC 12 Program counter Holds address of instruchon
TR 16 Temporary register Holds temporary data
INPE g Input rezister Holds input character
OUTE 8 Chutput register Holds output character

Computer Instructions

A basic computer uses a 16-bit Instruction Register (IR) to store instructions. These
instructions can belong to one of the following three categories:

. Memory Reference Instructions
o These instructions access memory to fetch an operand.
o The second operand is always the Accumulator (AC).
o The instruction format consists of:
* 12-bit memory address
= 3-bit opcode (other than)
= 1-bit addressing mode (direct or indirect)

Example: Suppose the IR register contains:
OOOTXXXXXXXXXXXX

This means the instruction is ADD. After fetching and decoding. the system

performs:
DR [] MIAR] (Fetch data from memory to Data Register)
AC [JAC + DR (Add data to Accumulator)
sc[lo (Reset the sequence counter)

2. Register Reference Instructions

o These instructions operate on registers instead of memory.

o The instruction is identified when:
» IR(14-12) = 1M1 (indicates it is not a memory reference instruction)
* IR(15) =0 (indicates it is not an |/O instruction)

o The remaining 12 bits define the operation on registers.

Example: If IR register contains:

O01moo1000000000

This represents the CMA (Complement Accumulator) instruction. After execution:
AC [] ~AC (Invert all bits of the accumulator)

3. Input/Output (1/0) Instructions
o These instructions enable communication between the computer and
external devices.
o Theinstruction is identified when:
» IR(14-12) = 111 (not a memory reference instruction)
» IR(15) =1 (not a register reference instruction)
o The remaining 12 bits specify the /O operation.

Example: If IR register contains:

1111100000000000

This represents the INP (Input) instruction. After execution:
INPUT character from an external device and store it.

This classification helps in efficiently decoding and executing instructions in a basic
computer system.

Timing and Control -

A general purpose computer consists of input-output units, processing unit and a
memory unit. Input-output permits interaction with the physical world whereas the memory
unit stores user program and the binary information.

The functional part of general purpose digital computer, its functional units, the
interaction between the control and the types of the control logic.

@ General Purpose computer ——‘_\\ @ Processor (CPU)

Il.r.l.'rfll:; Processor \ Arithmatic @ Set of
OR and E Registers
. . [al]
Output CPU Legic Unit 2
Units
. loiernal Bu i
|
Timing & Control Uniﬂ
Two Types

N Initiate
\Micru-operatiuna Output
Control Data ’

Logic g Processor
y tatus-conditions

@Cuntrul Unit and CPU interaction Input data

Hard-Wired Micro-Programmed
Control Control

Type of Control Units

All sequential circuits in the Basic Computer CPU are driven by a master clock, with
the exception of the INPR register. At each clock pulse, the control unit sends control signals to
control inputs of the bus, the registers, and the ALU.

Basic function of the control logic-
e To generate fiming sequences.
e To take input from the exfernal sources and initiates the sequence of
micro-operations for the processor to perform.
e General inferaction between the processor and the control logic.

Types of control logic-
Control unit design and implementation can be done by two general methods:

1. Hardwired control logic
2. Micro-programmed control logic

Instruction from memory are read info IR, decoded in the control unit; now the control unit
will generate a binary control variable which is a string of 1's and O's which is called a
control word. Control words can be generated by logic hardware or can be programmed
to perform various operations on the components of a system.

. Hard-wired control:

A hardwired control unit is designed from scratch using traditional digital logic design
techniques to produce a minimal, optimized circuit. In other words, the control unit is like an
ASIC (application-specific integrated circuit).

Hardwired control is a control mechanism to generate control signals by using
appropriate finite state machine (FSM). The pair of "microinstruction-register" and
"control storage address register" can be regarded as a "state register" for the hardwired
control. Note that the control storage can be regarded as a kind of combinational logic
circuit. We can assign any O, 1 value to each output corresponding to each address, which
can be regarded as the input for a combinational logic circuit. This is a truth table.

Figure below shows a simplified block diagram of the hardwired control unit. The
control unit is built using the logic gates and is designed as a sequential state machine.

Instruction fetch
From memory

Y

Instruction
Reqgister (IR)

CE".I'I’H

Control Signals
Generator - —

Figure : simplified diagram of hardwired control unit

The instructions are passed fo the control unit for decoding, and the control unit
generates a set of micro-operations for each instruction. These micro-operations control
the internal operation of the CPU.

Example of hardwired control unit-

The block diagram of a hardwired control unit is shown below. It consists of;

Instruction registers,

3*8 instruction decoder,

flag | to store the addressing mode bit,
Control logic,

4*16 Sequence decoder,

4-bit sequence counter

Instruction register (/R)

Other inputs

Control
outputs

Increment (INR)
Clear (CLR)
Clock

Mechanism:

e Aninstruction fetched from memory, it is transferred into the instruction resister
(IR) where it is decoded into three parts: | bit, operation code and bits O through 11.
e The operation code bit is decoded with 3 x 8 decoder producing 8 outputs DO
through D7.
bit 15 of the instruction is transferred to a flip-flop I.
And operand bits are applied to control logic gates.
The 16 outputs of 4-bit sequence counter (SC) are decoded into 16 timing signals
TO through T15.

This means instruction cycle of basic computer cannot take more than 16 timing pulse.

Timing and control Signals generated:

m

1

T2

_F]

\

|

13

T4

‘—

n3

R
SL

‘A .

e Generated by 4-bit sequence counter and 4x16 decoder.

e The SC can be incremented or cleared.

e Example: TO, T1, T2, T3, T4, TO, T1. ..

The sequence counter generates the precisely controlled TO to T15 a total of 16 timing
pulses. As an operation say memory operation completes in 4T states, it is required to
clear the sequence counter so that another operation can be initiated.

The logic for clearing the SC:

The timing diagram shows this micro-operation.

D3 becomes active at the end of T2.

D3T4:SC[]0

D3.T4 is ended to produce a low CLRSC at the end of T4.

Clear SC[] 0 af the end of T4.

e Assume: At time T4, SC is cleared to O if decoder output D3 is active: D3T4: SC [] 0

Micro programmed control:

A control word can be programmed tfo perform various operations on
components of the system. A control unit whose control word is stored in the control
memory which is usually a ROM in called as micro-program control unit. Each control

word in the contfrol memory contains within it a microinstruction. Every microinstruction
specifies one or more micro-operations.

A micro-program is written for every instruction supported by the CPU. Each
instruction of a program cause the corresponding micro-program fo be fetched and its
control information extracted in a manner that resembles the fetching and execution of a
program from the main memory. Since the control signals are embedded into a kind of
low-level software- this is also referred as firmware. The general feature of MCU is:

e One time programmable, programmed during manufacture
e We can change its functionality, but generally not required once designed
e Reusability-code

Micro programmed control is a control mechanism to generate control signals by
using a memory called control storage (CS), which contains the control signals. Although
micro programmed confrol seems to be advantageous to CISC machines, since CISC
requires systematic development of sophisticated control signals, there is no intrinsic
difference between these 2 control mechanisms.

Difference between Hardwired control and Micro-programmed control units

Attributes

MNo. of Instructions

Design Logic

Speed
Cost
Flexibiliky

Design Complaxity

Chip Area

Applications

Hardwired Control

Uses Fixed Instruction

Binary control word is generated using
fixed logic blocks - Logic gates, MUX,
decoders, FF eltc.

High Speed of Operation
Expensive
Mot Flexible for adding new features

Relatively complex design if more
functions are to be controlled

Small

Used in RISC Processors suc as ARM, PA-
RISC, Power Architecture, Alpha, AVR, ARC
and the SPARL.

Micro-programmed Control

Uses Variable or large instruction set

Binary control word are stored in a control

memory.

Comparatively Slow
Inexpensive
New features can easily be incorporated

Design Complexity is less when compared
with hardwired control

Large

Used in CISC Processors such as:
Examples of CISC: VAX, Motorola 68000
family, System /360, AMD and the Intel xB6
CPUs.

Instruction Cycle
The CPU performs a sequence of microoperations for each instruction. The sequence for
each instruction of the Basic Computer can be refined into 4 abstract phases:
1. Fetch instruction
2. Decode
3. Fetch operand
4. Execute
Program execution can be represented as a fop-down design:
1. Program execution
a. Instruction 1
i. Fetch instruction
ii. Decode
iii. Fetch operand
iv. Execute
b. Instruction 2
i. Fetch instruction
ii. Decode
iii. Fetch operand
iv. Execute
c. Instruction 3 ...

Program execution begins with:
PC <« address of first instruction, SC < O

After this, the SC is incremented at each clock cycle until an instruction is completed,
and then it is cleared to begin the next instruction. This process repeats until a HLT instruction
is executed, or until the power is shut off.

Instruction Fetch and Decode

The instruction fetch and decode phases are the same for all instructions, so the control
functions and microoperations will be independent of the instruction code.

Everything that happens in this phase is driven entirely by timing variables To, T1and T2.
Hence, all control inputs in the CPU during fetch and decode are functions of these three
variables alone.

To: AR « PC

Tt IR € MIAR], PC « PC +1

T2 Do-7 ¢« decoded IR(12-14), AR « IR(O-11), | « IR(15)
For every fiming cycle, we assume SC < SC + 1 unless it is stated that SC <« O.

Micro Programmed Control:
Control Memory

e The control unit in a digital computer initiates sequences of microoperations

e The complexity of the digital system is derived form the number of sequences
that are performed

e When the control signals are generated by hardware, it is hardwired

e In a bus-oriented system, the control signals that specify microoperations are
groups of bifs that select the paths in multiplexers, decoders, and ALUs.

e The control unit initiates a series of sequential steps of microoperations

e The control variables can be represented by a string of I's and O's called a control
word

e A microprogrammed control unit is a control unit whose binary control variables
are stored in memory

e A sequence of microinstructions constitutes a microprogram
e The control memory can be a read-only memory

e Dynamic microprogramming permits a microprogram to be loaded and uses a
writable control memory

e A computer with a microprogrammed control unit will have two separate
memories: a main memory and a control memory

e The microprogram consists of microinstructions that specify various infernal
control signals for execution of register microoperations

e These microinstructions generate the microoperations fo:
o fetch the instruction from main memory
o evaluate the effective address
o execute the operation
o return control fo the fetch phase for the next instruction

e The control memory address register specifies the address of the microinstruction
e The control data register holds the microinstruction read from memory

e The microinstruction contains a control word that specifies one or more
microoperations for the data processor

e The location for the next microinstruction may, or may not be the next in sequence

e Some bits of the present microinstruction control the generation of the address of
the next microinstruction

e The next address may also be a function of external input conditions

® While the microoperations are being executed, the next address is computed in
the next address generator circuit (sequencer) and then transferred into the CAR
to read the next microinstructions

Typical functions of a sequencer are:

incrementing the CAR by one

loading into the CAR and address from control memory

transferring an external address

loading an initial address to start the control operations

A clock is applied to the CAR and the control word and next-address information
are taken directly from the control memory

e The address value is the input for the ROM and the control work is the output

e No read signal is required for the ROM as in a RAM

e The main advantage of the microprogrammed control is that once the hardware
configuration is established, there should be no need for h/w or wiring changes

e To establish a different control sequence, specify a different set of
microinstructions for control memory

Address Sequencing

e Microinstructions are stored in control memory in groups, with each group specifying a
routine
e FEach computer instruction has its own microprogram routine to generate the
microoperations
e The hardware that controls the address sequencing of the control memory must be
capable of sequencing the microinstructions within a routine and be able to branch
from one routine to another
e Steps the control must undergo during the execution of a single computer instruction:
o Load an initial address into the CAR when power is furned on in the computer.
This address is usually the address of the first microinstruction that activates
the instruction fetch routine — IR holds instruction
o The control memory then goes through the routine to determine the effective
address of the operand — AR holds operand address
o The next step is to generate the microoperations that execute the instruction
by considering the opcode and applying a mapping

o After execution, control must return to the fetch routine by executing an
unconditional branch

The microinstruction in control memory contains a set of bits to initiate

microoperations in computer registers and other bits to specify the method by which
the next address is obtained

Conditional branching is obtained by using part of the microinstruction to select a
specific status bit in order to determine its condition

The status conditions are special bits in the system that provide parameter
information such as the carry-out of an adder, the sign bit of a number, the mode bits
of an instruction, and i/o status conditions

The statfus bits, together with the field in the microinstruction that specifies a branch
address, control the branch logic

The branch logic tests the condition, if met then branches, otherwise, increments the
CAR

If there are 8 status bit conditions, then 3 bits in the microinstruction are used fo
specify the condition and provide the selection variables for the multiplexer

For unconditional branching, fix the value of one status bit to be one load the branch
address from control memory into the CAR

A special type of branch exists when a microinstruction specifies a branch to the first
word in control memory where a microprogram routine is located

The status bits for this type of branch are the bits in the opcode

Assume an opcode of four bits and a control memory of 128 locations

The mapping process converts the 4-bit opcode to a 7-bit address for control
memory

This provides for each computer instruction a microprogram routine with a capacity
of four microinstructions

Subroutines are programs that are used by other routines to accomplish a particular
task and can be called from any point within the main body of the microprogram
Frequently many microprograms contain identical section of code

Microinstructions can be saved by employing subroutines that use common sections
of microcode

Microprograms that use subroutines must have a provisions for storing the return
address during a subroutine call and restoring the address during a subroutine return
A subroutine register is used as the source and destination for the addresses .

	Instruction Format
	
	Instruction Codes
	Computer Registers
	Computer Instructions
	Timing and Control -
	Instruction Cycle

