
[work in progress] 
 
As machine learning pervades more and more sectors of society, it brings with it many benefits, 
but also poses risks, especially as systems become more powerful and difficult to understand 
and control. It is important to understand these risks as well as our progress towards addressing 
them. We believe that systematically measuring these risks is a promising route to improving 
understanding and spurring progress.  In addition, measuring safety-related qualities of ML 
systems (e.g. alignment) allows us to hold models to certain safety standards and to compare 
the safety performance of different systems. Both of these help incentivise AI developers to 
invest more heavily in safety. 
 
This RFP solicits ideas for measuring several safety-related properties: 

1.​ concrete risks, such as “objective hacking”, “competent misgeneralization”, or “intent 
misalignment”, that scale with ML capabilities; and 

2.​ unintended or unexpected emergent capabilities that may pose new risks. 
 
The three concrete risks constitute problems that could get worse, rather than better, as 
capabilities improve, and thus lead to a negative long-term trajectory from ML. Meanwhile, 
measuring emergent capabilities guards against new unknowns, where we care most about 
capabilities that could pose new risks or rapidly increase the scope or impact of AI systems. 
Below we describe several categories of work that relate to measuring the above risks. 
 
A measurement is any reproducible quantity or set of quantities (such as an ROC or learning 
curve) associated with a phenomenon of interest. While one type of measurement is the 
accuracy on a benchmark dataset, other types of measurement include probing accuracy, 
disagreement rate, or adversarial robustness, to name a few examples. Others include plotting 
accuracy vs. model width to understand the phenomenon of double descent (Belkin et al., 
2018), plotting phase transitions in learning curves to understand grokking (Power et al., 2021), 
or collecting a few hundred examples of common misconceptions to measure imitative 
deception (Lin et al., 2021). Many subjective judgments can be turned into measurements by 
employing human raters. 
 
Non-examples of measurements include a single anecdote of a phenomenon, a thought 
experiment, a method to improve performance, or a theorem. The primary motivation for 
focusing on measurements is that we feel many of the most important risks from ML have not 
yet been adequately operationalized, and that operationalizing them is an important first step 
towards enabling progress. 
 
Measuring Progress and Risks 
Many AI risks have so far been measured only in limited settings, or not at all. We are interested 
in work to measure a broader range of risks, especially in settings that indicate how the risks will 
scale for increasingly large-scale and capable ML systems. Below we indicate several specific 
thrusts for measuring risks and our progress towards addressing them. 
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Data requirements for reward learning. Since human values are too complex to be 
hand-coded, ML systems will likely need to use reward models learned from human feedback. 
Preliminary evidence [1, 2] suggests that these models are often imperfect and that it is 
important to continually update them with new data (inadequate feedback). How quickly do we 
need to scale the quantity of data to keep pace with increasingly complex tasks?  To understand 
this, we could construct a family of reward learning benchmarks of increasing complexity 
(measured e.g. by the size of a neural network needed to perform well, or by more intrinsic 
metrics such as the size of the action space, number of classes, etc.) and measure the 
corresponding data requirements until the system seems to reliably achieve outcomes that 
humans approve of.​
​
A related question is how much an incorrect reward model affects the resulting policy. For this, 
we would like metrics to quantify the degree of incorrectness of a reward model in realistic 
settings, and to understand how imperfections in the reward function propagate to the 
policy--can small imperfections lead to large losses according to the true reward? Are these 
imperfections amplified or attenuated with more capable policy optimizers? We seek reward 
learning benchmarks that are rich enough to elucidate these questions. 
 
Objective hacking and deceiving weak evaluators. By virtue of their training process, ML 
models often learn to “hack” reward or objective functions--finding outputs that do well according 
to the explicit reward function, but that were unintended and undesired [3, DeepMind post]. 
While this is ubiquitous for simple proxy objective functions, it can happen even if human 
evaluators provide a putative “true” objective as a learning target [4]--indeed, such cases are 
particularly worrying, as it shows that ML systems have explicit incentives to deceive humans 
and will act on those incentives (deceiving evaluators).​
​
We are therefore interested in ways of measuring objective hacking, and especially on 
measurements focused on machine deception. One possible route is to consider the difference 
between strong and weak supervisors: if supervised, for instance, by rushed Mechanical 
Turkers, an ML system might produce undesired outputs that can still be easily caught by a 
more careful human supervisor. As the underlying model becomes more expressive and heavily 
optimized, we may therefore need increasingly attentive supervisors to steer the model in the 
right direction, but understanding the scaling of this is important--can a slightly more attentive 
supervisor steer a much more powerful model, or are the returns to better supervision less 
favorable? This is analogous to understanding the data requirements for reward learning, 
except here we focus on the quality rather than quantity of data required (measured, for 
instance, by the time or financial incentives given to the supervisors).​
​
Finally, reward models could misgeneralize, which could be a particularly large issue if it leads 
to coherent but misdirected behavior out-of-distribution. We are therefore interested in 
measuring reward misgeneralization and its effects [Koch et al., 2021]. We discuss this next in 
the broader context of misgeneralized policies. 
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Scalability of robust generalization. ML models often lack robustness on new distributions, 
which could be a particularly large problem in the future if policies competently misgeneralize to 
have significant but unintended impacts (for instance if a system’s model of rewards, values, or 
ethics generalizes poorly relative to its overall capabilities). 
 
In the last few years, many benchmarks have been constructed for measuring robustness [IN-C, 
IN-v2, IN-A, IN-R, WILDS, Packer et al. (2019)]. On these benchmarks, there is a strong 
correlation between in-distribution and out-of-distribution accuracy. As a result, larger models 
generally perform better out-of-distribution. Moreover, pre-training often substantially closes the 
robustness gap, assuming the pre-training data qualitatively overlaps the OOD data.​
​
While these insights help current practice, they are unsatisfying for two reasons. First, they 
potentially rely on having pre-training data that encompasses the changes that occur at test 
time, which is unrealistic for extreme or highly novel situations. Second, preliminary evidence 
suggests that larger models can have worse OOD performance on some shifts [Sagawa 2020 
(a), (b)]. To predict future robustness issues, it is important to measure this regime. Finally, most 
distribution shift benchmarks assess the robustness of individual classifications, but the largest 
risks come from failures of complex, coherent policies.​
​
We therefore solicit proposals for constructing new distribution shifts that are realistic but that 
escape the pre-training distribution, or where model scaling hurts rather than helps. We would 
particularly value ways of measuring robustness for tasks that produce coherent 
policies, e.g. text/image generation, reinforcement learning, or robotics. 
 
We are relatedly interested in better understanding when models follow spurious proxy cues and 
what factors influence this (as models might competently misgeneralize by deciding to pursue 
those proxies). For instance, perhaps local search methods such as stochastic gradient descent 
are biased towards “quick fixes” instead of addressing root causes of error. Can we measure the 
difference between quick fixes and root causes and systematically study the effects of different 
learning strategies? 
 
Intent misalignment. A model exhibits intent misalignment if it is not ‘trying’ to do what the user 
wants; it provides a wrong or undesired output in a situation where it is capable of outputting a 
better output, and capable of understanding the input prompt. Some examples that would 
indicate intent misalignment include: 

●​ Task-irrelevant changes to the prompt improve performance - e.g. an image generation 
model produces higher-quality outputs when you add ‘use unreal engine’ to the prompt 

●​ Performance differs based on the level of expertise displayed in the prompt. For 
example, a ‘coding assistant’ instructed to correctly implement some function succeeds 
when prompted with professional-quality code, but writes a buggy implementation when 
prompted with code written by a beginner. 

●​ Better performance when the task is structured as text completion rather than 
instruction-following 
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●​ Worse performance when the instructions are written in a (in-distribution) dialect, such 
as AAVE, rather than ‘standard English’.​
 

Improved performance on some dataset after finetuning on that specific dataset, or improved 
performance when the prompt contains clearer and more precise instructions, would not 
constitute evidence of misalignment. Better performance after meta-tuning on the task format is 
more ambiguous. This probably is evidence of misalignment, since meta-tuning doesn’t contain 
any information about the specific task. However, if the meta-tuning instead helped improve the 
model’s capability to understand the task format, then this performance improvement wouldn’t 
constitute evidence of misalignment. Avoiding this ambiguity and finding clear-cut ways to 
measure intent misalignment is one of the core research challenges for this subcategory.​
 
We are interested in benchmarks which can be used to compare aspects of the ‘alignment gap’ 
across models, or investigations of particularly egregious or interesting examples of 
misalignment. Existing examples include a benchmark measuring how much language models 
imitate human falsehoods [Lin et al, 2021] and analysis of alignment in code models based on 
changes in solution quality when prompt quality is varied, in the “Alignment” appendix of [Chen 
et al, 2021]. 
 
One approach to measuring intent misalignment could be to take cases where it’s already 
known that the model has a particular capability (e.g. based on a model atlas [Schubert et al, 
2020]) and assess how often the model fully uses that capability to achieve tasks.  
 
A complementary goal is to better understand a given model’s capabilities. For instance, one 
could try to build predictors for a task based on simple functions of a model’s internal state (e.g. 
using the predictive entropy of a code generation model to detect bugs). If such predictors exist, 
it is strong evidence that a model is capable of a given skill, so that failing to exhibit it would 
indicate intent misalignment. More discussion of defining intent alignment, as well as some 
additional research suggestions, can be found at the following blog post. ​
 
Unexpected emergent capabilities. New AI capabilities will require technical and policy 
responses to address their societal ramifications; the more suddenly these capabilities might 
appear, the more important it is to prepare responses in advance. Previous experience shows 
that new capabilities such as zero-shot learning appear emergently at scale, and aren’t just an 
extrapolation of apparent previous trends [GPT-2, More is different].​
​
Accordingly, we are interested in broadly understanding when we expect to see rapidly 
emergent capabilities--or more generally, the timescale across which capabilities progress from 
slightly above baseline to superhuman. For instance, [GPT-3 paper] find that some tasks 
respond quickly to model size while others respond more slowly--a 4x increase in model size 
increases BLEU score from 5 to 25, while on PhysicalQA a 1750x increase only increases 
binary classification performance from 65% to 85%. Other capabilities might respond slowly to 
model size but quickly to data quantity or diversity. We thus seek to generally understand what 
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determines the timescale on which a capability emerges.​
 
We are also interested in scanning for and tracking key capabilities that might significantly 
increase the scope or impact of machine learning, or pose new risks. This includes transfer 
learning [multitask paper], reasoning [MATH paper], and long-term planning (broader scope). It 
also includes specific risky capabilities such as deception, hacking, resource acquisition, or 
ability to model the training process. Since important capabilities could emerge quickly with 
scale, we cannot solely rely on tracking apparent capabilities over time, but will also need to 
identify and track likely precursors (for instance, could we have predicted from GPT-1 that 
GPT-2 would exhibit zero-shot learning?). 
​
Finally, one way we could see discrete jumps in the future is if processes other than SGD come 
to dominate the learning dynamics of ML systems. For instance, if systems adapt over the 
course of their own execution (e.g. via “learning to learn”), and they execute over long time 
horizons, then this “inner” adaptation might eventually dominate the learning dynamics and thus 
lead to a sudden faster timescale of progress. We think such scenarios are likely to take us by 
surprise if not explicitly anticipated, and so we are particularly interested in identifying and 
measuring processes that could lead to such a timescale shift. 
 
Other topics. We listed topics above where we are likely to fund high-quality on-topic 
proposals. However, we are also more broadly interested in work that identifies potential failure 
modes of AI systems. To fit this RFP, they should satisfy the following criteria: 

●​ The failures should manifest, or plausibly manifest, for large-scale deep learning 
systems. 

●​ The proposal should argue, or demonstrate, that the failure is expected to get worse 
rather than better over time, as systems become more capable. 

●​ The proposal should argue for why this failure relates to inadequate feedback or 
competent misgeneralization, or is otherwise connected to the AI alignment problem 
discussed in the broader RFP. 

 
Finally, we are also open to improved measurements on topics related to those above, such as 
anomaly detection (versus robustness) for complex policies. Such proposals should clearly 
identify what is unsatisfactory with existing measurements, especially with regard to their ability 
to project risks for future systems.​
 
Evaluation Criteria 
We will evaluate proposals on the following criteria.​
 
1. Is the approach forward-looking? We are interested in understanding issues that will arise in 
the future, not just those that exist today. We imagine a hierarchy of knowledge that increasingly 
informs future forecasts: 

●​ Finding any examples of a phenomenon [e.g.: Geirhos, Szegedy “Intriguing Properties of 
NNs”] 
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●​ Systematically investigating and characterizing a phenomenon [e.g.: Hendrycks “Many 
Faces”, Goodfellow “Explaining and Harnessing Adversarial examples”] 

●​ Understanding when it tends to increase vs. decrease as we scale up resources (data, 
model size, etc.) [e.g.: Sagawa, maybe Nakkiran, maybe Hendrycks IN-C]. 

●​ Quantitatively characterizing its scaling behavior [cite scaling laws paper, Taori/Schmidt 
IN-testbed]. 

Proposals will be judged relative to our current state of knowledge--if only anecdotal examples 
currently exist, any systematic investigation is valuable, although it would be even more 
valuable if it also considers forward-looking questions such as response to model/data size. 
 
2. Soundness of measurement: Any measurement is a limited window into the broader 
phenomenon it purports to investigate. Is care taken to identify and minimize these limitations? 
 
3. Topicality: Does the proposal address one of the topics in the RFP, or otherwise justify its 
relevance to the long-term safety of AI systems? Is it focused on understanding the properties of 
large-scale deep learning systems?​
​
We understand that there is inherent uncertainty in research. A proposal that aims to study 
machine deception might find that such deception does not actually occur in the setting that was 
studied. Such null results are also valuable, and we will judge proposals on whether they are a 
best-effort attempt to investigate an important phenomenon. 
 
4. Richness of data source: Insights are more likely to be general when the underlying data 
source encompasses rich factors of variation. For instance, while many trends on CIFAR-10 
generalize to ImageNet, not all of them do; and it is common for trends on MNIST to not 
generalize to either ImageNet or CIFAR-10. Proposals should use data sources that are rich 
enough to provide generalizable insights.​
​
We will judge proposals relative to existing measurements and benchmarks in the same area: 
for instance, in a world where no computer vision benchmarks existed at all, even MNIST would 
be a valuable window into model performance. 
 
5. Quality of methodology: While ML researchers are by now used to constructing benchmarks 
to measure test accuracy, new forms of measurement pose greater methodological challenges. 
For instance, out-of-distribution accuracy may be substantially noisier than in-distribution 
accuracy [cite BERTS of a feather, Are Larger Pretrained Models Better, MultiBERTS]. In 
addition, some measurements are not actually sensitive to what they purport to measure 
[Adebayo et al. (2018)], a problem that occurs even for traditional benchmarks [cite DailyMail 
paper]. For this reason, it is important to understand the sources of noise that affect a 
measurement, as well as what signals the measurement should be sensitive to, and quantify 
both to ensure that noise does not overwhelm signal [Grounding Representation Similarity]. For 
the same reason, it is important to construct baselines and controls [Hewitt & Liang (2020)]. ​
​
Strong proposals should consider these noise and sensitivity issues, and propose​
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appropriate experimental designs to check that they don’t interfere with the results. In addition, 
since there are many ways to measure the same phenomenon, they should connect their 
results to other existing related measures and comment on their consistency or inconsistency 
[ImageNet-R, Fort/Dziugate et al.]. 
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