DEVELOPMENT- TESTING ENVIRONMENT

INTRODUCTION

For Sprint 1, the main goal was to find out what visualization methods are needed for the environment. The
acoustic camera, Cam Iv64,’s main forms of visualization are heatmap, spectrum, and spectrogram. But for this
project, only the heatmap and spectrum will be implemented. As an extra form of visualization, the idea came
to visualize the wave that the sound represents. This environment is made to showcase the visualization and to
see if it is fitting the project.

GENERAL
To start the project, we need to have a player moving around the scene. For the inputs of the player, I'm using

the New Unity Input System that calls input via events.

The InputProcessor is an abstract class that other Input classes can inherit. This is to make the process more
solid since the classes that handle the input will depend on this abstraction.

Input();

okInput();

eInput();
kInput();

okInput()

lookInput = playerInputlook;

Proce veInput()

moveInput = playerInputMove;

|
|
|

OnLook(Inp

playerInputlook

The Playerlnput is used in Playermovement, which handles both moving the player and looking around.

\
A Sorama
Q.Fontys INFORMATION AND make sound insightful

COMMUNICATION

Input()

_moveInput = _inputProcessor.movelnput;
_lookInput = _inputProcessor.lookInput;

* _moveInpu t sform.forward * _movelnput.y;
ed * Time.

otation -= _lookInpu
otation = Mathf.Clam ation, lockHeightMinlLimit, lookHeightMaxlLimit);

_FPSCamera.localRotation
transform.Rota

HeaTMAP

For the heatmap functionality, there are a few things that were created

- Heatmap Shader

- Mock Soundsource
- Mock Microphone
- Heatmap Grid

- Removal of the trail

For the heatmap shader, I've followed a simple tutorial that creates a shader that changes color upon impact
from an object:

https://www.youtube.com/watch?v=Ah2rHGtOSbs

I've modified the code so that it changes color when colliding with a ray, shooting from the mock Soundsource.
The shader contains certain point ranges on which the pixel’s color will change.

https://www.youtube.com/watch?v=Ah2rHGtOSbs

return colors[8];

if (weight >= pointRanges

return colors[4];

if (weight < pointR

ratio_over lower point = dist from lower point /

i] - colors

color_contribution = color_range * ratio_over_lower_point;

r = colors[i - 1] + color_contribution;

SV_Target

totallei

heatmapColor = HeatForPixel(
return (col (1 - heatmapColor. + (heatmapColor heatmapColor.a

The Mock Soundsource will shoot a ray in the direction it is looking. When colliding with the microphone, it will
send the coordinates of the texture it collided with to both the gridheatmap and the shader heatmap.

CreatelineTowardsHeatmap()

urceDirection = transform.Tra

hit, Mathf.Infinity, Lay

microphoneHeatmap. Values(hit. tureCoord

addHitPoint(hit.t P 4 - 2, hit

transform.position, sourceDirection * hit.d

Since shaders can’t use multidimensional arrays, Points[] are used to store three different values to the shaders:
XPosition, YPosition, and Intensity.

addHitPoint

Points[HitCount
Points[HitCount
Points[HitCount

HitCount++;
HitCount

During development, another heatmap tutorial was found that also uses a shader.

uniform _Points Length = 0;

uniform float3 _Points [201: Vector3[] positions;

uniform float2 Properties [20]1; L) EreimeEss
[1 intensities;

sampler2D HeatTex; - .
. - Material material;

ertOutput output) : COLOR {

" _Points_Lengt positions.Length);
{ (ions. I thy i +4)

material. or("_Points" + i. tring(),
positions[il):

Vector2 properties = W 2 (radiuses[i],
intensities[il):
material. ctor("_Properties" + i.ToString(),
properties);
half4 color 2 0.5))¢ }
col

Comparing both shaders, | choose the first one since, while it wasn’t as fluid as the second one, there was more
control over this one, and was easy to understand.

For the Grid system of the heatmap, | followed along with this tutorial:
https://www.youtube.com/watch?v=mZzZXfySeFQ

There’s an initializer class that initializes the grid and sets the values

https://www.youtube.com/watch?v=mZzZXfySeFQ

r heatmapVisual;

InChildr

.5F, nsform.position.

Then there is also a GridMeshGenerator that creates the mesh for the grid and updates it every time a new

value gets added.

); y++)

() +y;
1, 1) * grid.GetCellSiz

lue(x, y)

dValue / Heatma VALUE;

triangle inde i tion(x, y) + quads

of, quads

gridvalueUv

Lastly, there is a grid class that adds the value to the grid and changes the color based on its value

idvaluelV);

orldPosition, value, fullvalueRange, totalRange)

= Mathf.RoundToInt((Jvalue / (totalRange - fullValueR

originY);

alueAmount alue
fullValueRan

alueAmount -= lo lueAmount * adius - fullValueRal

Value(originX + x, originY + y, a lueAmount);

alueAmount);

/alueAmount);

Having these scripts allows this to happen:

During testing, the conclusion was that we should use the shader instead of the grid, as the shader looks
more fluidly than the grid system.

SINEWAVE

For the sinewave visualization, the following scripts were made in order to test it out.

Since both the sound source and microphone should contain X, Y, Z, Frequency, Amplitude, and Phase, An
abstract class called SinewaveComponent is created and will be inherited by both classes.

t player;

Field]

_frequency;

_amplitude;

Amplitude { { return _amplitude; } {_amplitude =

Frequency { { return _frequency; } { _frequency

Phase { { irn _pha } { _ph

= FindC
.trans
.transform.p c
.transform.position.z;

Both the sound source and microphone class have a method that will always look at the player. This is for the
clear readability of the Ul attached to the game objects.

AtPlaye

transform. LookAt(player.transform);

The Microphone also contains methods that handle setting the Frequency, Amplitude, and Phase.

Amplitude

amplitude = undsource.Amplitude;
_realisticAmplitude)

ance = manager.CalculateDistanceBetweenSourceAndMicrophone(.transform, soundsource.transform);
r.CalculateAmplitude(ance, amplitude);

Amplitude = amplitude;

Frequency = soundsource.Frequency;

Phase()

distance manager.CalculateDistanceBetweenSourceAndMicrophone(.transform, soundsource.transform);
newPh manager.CalculatePhase(Frequency, distance);

SetAttributes()

etFrequency();
etAmplitude();

The wave contains a class called SinewaveGenerator that draws the wave depending on the sound source’s
frequency, amplitude, and phase. It also contains a bool for realistic amplitude or not.

DrawSinedave()

amplitude;

_lineRenderer.positionCount = _bufferPoints;
(currentPoint = @; currentPoint < _bufferPoints; currentPoint+t)

progr § currentPoint / (_bufferPoints - 1);
lerpedDista Lerp(beginPo i i endPosition.position,
currentPosition ance (beginP B » lerpedDistance);

if (_realisticAmplitude)
{

originalAmplitude = _sinewaveManager.CalculateAmplitudeForPosition(_amplitude, currentPoint, beginPosition, _lineRenderer);

¥ (originalAmplitude * i * ((_frequency * currentPosition))+ _phase) + 1
_lineRenderer.S iti lerpedDistance.x, y, lerpedDistance.z

(lerpedDistance.x, y, lerpedDistance.z));

Lastly, there is the SinewaveManager that does the calculation of the attributes such as amplitude and phase.

CalculateAmplitude(distance, amplitude)

if (distance < 1)
I
L
return amplitude;

factor = (1 / distam
mplitude = amplitude * factor;
return newAmplitude;

alculatePhase(frequency, distance)

wavelength = (2 * (T.PI)) / frequency;
remaini ist (distanc 3 vele
phase ((Ma .PI}) *

return phase;

To visualize the attributes of both the sound source and microphone, a class was created that would give the
values to the Ul.

amplitudeValueText. text component.Amplitude. ToString();
frequencyValueText. text component.Frequency . ToString();
PhaseValueText.tes component.Phase.ToString();

Having these scripts will result in the following scenario:

J /mf/\ TAAAAAY Y

During Testing, the conclusion came that this form of visualization won’t be used but the scripts will.
Examples are the sound source and microphone scripts, but also methods that calculate the amplitude and
phase.

SPECTRUM

For the spectrum functionality, | tested it out first with actual audio, since unity already had a method that
would allow you to retrieve FFT samples with different algorithms.

(0]

spectrum = [512];

_audioSource.Ge rumData(spectrum, @, FFTWindow.Blackman};

rum.Length - 1; i++)

For one of the visualizations, | follow this tutorial: https://www.youtube.com/watch?v=RiluNPNIaVs and to

have blocks function as the spectrum data.

(0]

if(_useBuffer)

: transform.local v 3(transform.localscale. U andBuffer[band] * scaleMultiplier) + scaleMultiplier, transform.localScal
i (!_useBuffer)

b transform.localScale (transform.localScale. v .freqBand[band] * scaleMultiplier) + scaleMultiplier, transform.localScale.

The sound source contains the Audiopeer Class that gets the spectrum data and groups them by frequency
bands. It also adds a band buffer to it.

MakeFrequencyBands() BandBuffe

count

nt; j++)

if (freqBand[i] < bandBuffer[i])
.

unt] * (count + 1); 1

bandBuffer[i] -= bufferDecrease[i];
buffe P

average /= count;

fregBand[i] = ave

https://www.youtube.com/watch?v=Ri1uNPNlaVs

The yellow one does not use a band buffer and the pink one does.

After that, | began looking for making a spectrum using script-written frequency, and | found an asset called FFT
Fast Fourier Transform: h : re.unity.com k | io/fft-fast-fourrier-transform-152492

x[1

inputSignal Time = .doubleToComp inputValues);

outputsignal Freq = -FFT{inpu

Y _output[ii] = Com Abs(outputSignal Freq[ii]);

Having these scripts will result in the following scenario:

https://assetstore.unity.com/packages/tools/audio/fft-fast-fourrier-transform-152492

During Testing, the conclusion came that for visualization we should use both the visualization on the
acoustic camera, but also on a separate plane for more details.

	DEVELOPMENT- TESTING ENVIRONMENT
	INTRODUCTION
	GENERAL
	HEATMAP
	SINEWAVE
	SPECTRUM

