
DEVELOPMENT- TESTING ENVIRONMENT

INTRODUCTION
For Sprint 1, the main goal was to find out what visualization methods are needed for the environment. The

acoustic camera, Cam Iv64,’s main forms of visualization are heatmap, spectrum, and spectrogram. But for this

project, only the heatmap and spectrum will be implemented. As an extra form of visualization, the idea came

to visualize the wave that the sound represents. This environment is made to showcase the visualization and to

see if it is fitting the project.

GENERAL
To start the project, we need to have a player moving around the scene. For the inputs of the player, I’m using

the New Unity Input System that calls input via events.

The InputProcessor is an abstract class that other Input classes can inherit. This is to make the process more

solid since the classes that handle the input will depend on this abstraction.

The PlayerInput inherits Inputprocessor, so this one will be used for the player movement.

The PlayerInput is used in Playermovement, which handles both moving the player and looking around.

HEATMAP
For the heatmap functionality, there are a few things that were created

-​ Heatmap Shader

-​ Mock Soundsource

-​ Mock Microphone

-​ Heatmap Grid

-​ Removal of the trail

For the heatmap shader, I’ve followed a simple tutorial that creates a shader that changes color upon impact

from an object:

https://www.youtube.com/watch?v=Ah2rHGtOSbs

I’ve modified the code so that it changes color when colliding with a ray, shooting from the mock Soundsource.

The shader contains certain point ranges on which the pixel’s color will change.

https://www.youtube.com/watch?v=Ah2rHGtOSbs

The Mock Soundsource will shoot a ray in the direction it is looking. When colliding with the microphone, it will

send the coordinates of the texture it collided with to both the gridheatmap and the shader heatmap.

Since shaders can’t use multidimensional arrays, Points[] are used to store three different values to the shaders:

XPosition, YPosition, and Intensity.

During development, another heatmap tutorial was found that also uses a shader.

Comparing both shaders, I choose the first one since, while it wasn’t as fluid as the second one, there was more

control over this one, and was easy to understand.

For the Grid system of the heatmap, I followed along with this tutorial:

https://www.youtube.com/watch?v=mZzZXfySeFQ

There’s an initializer class that initializes the grid and sets the values

https://www.youtube.com/watch?v=mZzZXfySeFQ

Then there is also a GridMeshGenerator that creates the mesh for the grid and updates it every time a new

value gets added.

Lastly, there is a grid class that adds the value to the grid and changes the color based on its value

Having these scripts allows this to happen:

During testing, the conclusion was that we should use the shader instead of the grid, as the shader looks

more fluidly than the grid system.

SINEWAVE
For the sinewave visualization, the following scripts were made in order to test it out.

Since both the sound source and microphone should contain X, Y, Z, Frequency, Amplitude, and Phase, An

abstract class called SinewaveComponent is created and will be inherited by both classes.

Both the sound source and microphone class have a method that will always look at the player. This is for the

clear readability of the UI attached to the game objects.

The Microphone also contains methods that handle setting the Frequency, Amplitude, and Phase.

The wave contains a class called SinewaveGenerator that draws the wave depending on the sound source’s

frequency, amplitude, and phase. It also contains a bool for realistic amplitude or not.

Lastly, there is the SinewaveManager that does the calculation of the attributes such as amplitude and phase.

To visualize the attributes of both the sound source and microphone, a class was created that would give the

values to the UI.

Having these scripts will result in the following scenario:

During Testing, the conclusion came that this form of visualization won’t be used but the scripts will.

Examples are the sound source and microphone scripts, but also methods that calculate the amplitude and

phase.

SPECTRUM
For the spectrum functionality, I tested it out first with actual audio, since unity already had a method that

would allow you to retrieve FFT samples with different algorithms.

For one of the visualizations, I follow this tutorial: https://www.youtube.com/watch?v=Ri1uNPNlaVs and to

have blocks function as the spectrum data.

The sound source contains the Audiopeer Class that gets the spectrum data and groups them by frequency

bands. It also adds a band buffer to it.

​ ​ ​ ​

https://www.youtube.com/watch?v=Ri1uNPNlaVs

The yellow one does not use a band buffer and the pink one does.

After that, I began looking for making a spectrum using script-written frequency, and I found an asset called FFT

Fast Fourier Transform: https://assetstore.unity.com/packages/tools/audio/fft-fast-fourrier-transform-152492

which does exactly what needs to be done to create a spectrum.

Having these scripts will result in the following scenario:

https://assetstore.unity.com/packages/tools/audio/fft-fast-fourrier-transform-152492

During Testing, the conclusion came that for visualization we should use both the visualization on the

acoustic camera, but also on a separate plane for more details.

	DEVELOPMENT- TESTING ENVIRONMENT
	INTRODUCTION
	GENERAL
	HEATMAP
	SINEWAVE
	SPECTRUM

