Trial Report - Lettuce (NFT)

Introduction

• Trial Start Date: 16 March 2025;

• Start of harvesting: 09 April 2025.

• **Trial end:** 24 May 2025

• Crop: Lettuce + Spinach

• Number of plants: Control - + Experimental -

Objective

To evaluate the effect of seaweed extract on growth parameters (weight, height, root length) and yield of lettuce plants under NFT systems.

Methodology

• Parameters Recorded:

- o Plant Weight (g)
- o Plant Height (cm)
- o Root Length (cm)
- o Harvest Weight (g)
- **Frequency of Readings:** Periodic data collection throughout the crop cycle, with final harvesting weights recorded on specific dates in April–May 2025.
- Analysis Method:
 - Independent **T-test** used to assess statistical differences between the two systems.
 - Significance threshold: p < 0.05.
- Fertilizer dosing: Twice in week
- **Seaweed dosing:** Apply 4 times in overall trial

Result

1. Plant Weight Comparison (g)

Sample NFT (A) NFT (B)

Mean (Calculated from data) (Calculated from data)

T-test $0.784 \rightarrow \text{Not Significant}$

2. Plant Height Comparison (cm)

Sample NFT (A) NFT (B)

Mean (Calculated from data) (Calculated from data)

T-test $0.054 \rightarrow \text{Near Significant}$

3. Root Length Comparison (cm)

Sample NFT (A) NFT (B)

Mean (Calculated from data) (Calculated from data)

T-test $0.132 \rightarrow \text{Not Significant}$

4. Harvest Weights

Date	NFT (A)	NFT (B)
09-Apr-2025	1470 g	2060 g
16-Apr-2025	3554 g	4316 g
04-May-2025	1084 g	2256 g
13-May-2025	1671 g	2500 g
18-May-2025	1533 g	2225 g

 $\textbf{T-test} \hspace{1cm} \textbf{0.0} \rightarrow \textbf{Significant}$

Observation sheet link:

https://docs.google.com/spreadsheets/d/1vdhNR58SrOovoDO2pfUE9YoDR1ut5Q3aW6iwfZ2cgqs/edit?gid=496375798#gid=496375798

Visual observations

• Nitrogen Deficiency:

Lettuce showed yellowing of older leaves due to nitrogen deficiency. A corrective application of 200 ppm nitrogen temporarily improved plant health, indicating nutrient responsiveness. However, symptoms reappeared, suggesting on going nutrient management challenges.

• System Performance:

The **DWC system** consistently outperformed the **NFT system** in growth parameters despite similar nutrient application.

Possible Reasons for DWC Superiority:

- Better root oxygenation: Air bubbler ensured consistent dissolved oxygen levels.
- Consistent nutrient availability: Roots remained submerged in a nutrient-rich solution.
- o **Buffering capacity:** Larger volume of solution in DWC helped maintain stable pH and EC levels.
- Root development space: More space and less restriction in DWC encouraged healthier root systems.

Conclusion

The t-test analysis doesn't show significant different in growth parameters & yield. But experimental plants showed 43.43 % higher yield during trial. This shows there is further scope to investigate reason behind non-significant t-test results and impact of seaweed extract on yield on lettuce during trial. We are proposing another trial in both NFT and DWC system with control plots.