
Ethereum decentralized mixing service (codename Laundromat) 
 
Laundromat is an Ethereum smart contract deployed by one of the mixing initiators. 
Laundromat is using ring signatures to detach the sender from the recipient of the transfered 
funds. 
Laundromat is using the withdraw address to create the ring signature. It prevents the 
forging and frontrunning of the redeem request. 
Laundromat requires a predefined amount of participants and predefined amount of Ether 
from each participant. 
Laundromat has a timeout to initiate a mix. After the timeout no mix is possible and all 
participants can take their funds back. 
 
Laundromat API: 
 
Laundromat has a constructor with mixing settings: amount of participants, funds 
denominator (how much Ether required from each participant), timeout. 
 
deposit(uint pubkey1, uint pubkey2): 
Accepts Ether deposit from an account and add it to participants list. pubkey1 and pubkey2 
are the 2 halves of 64 byte public key of the participant. 
 
withdraw(uint[] signature, uint x0, uint Ix, uint Iy): 
Try to withdraw funds by the sender using the ring signature. Signature should be valid 
(checked against public keys of the participants), signature should be created using the 
withdraw account address (prevents frontrunning). x0 is the first element in the ring. Ix and Iy 
is a part of the private key - it does not disclose neither private nor public key but gurantees 
no double spend will be possible. 
 
Problems: 
 

1.​ Gas limit. Verifying a signature uses a large amount of computations and likely hit 
gas limit. To prevent this the witdhraw call can be break to witdhraw1, withdraw2,... 
subsequent calls. Sequence should be maintained by a finite state machine using 
local contract storage. 

2.​ Stack limit. Verifying a signature will likely hit EVM stack limit of 16 32 bytes local 
variables. It is possible to avoid it using contract storage (requires additional for 
storing variables) and will likely be a smaller issue when using a finite state machine. 

3.​ Debugging. Use pyethereum python project to verify against working solution: 
https://github.com/ethereum/pyethereum 

4.​ Checking contract validity. The mixing should be organized by an app which will 
verify the contract validity. 

5.​ Complexity of usage. The mixing should be organized by an app to hide the inner 
complexity and guide the user. 

 
Use case: 
 



1.​ Alice decides to mix 100 ether. 
2.​ Alice looks for existing mixing contracts. 
3.​ Alice finds an existing 10 ether mixing contract. 
4.​ Alice joins this contract (and sends 10 ether here) and creates own for 90 ether. 
5.​ Alice find that the 10 ether contract has full amount of participants. She can mix her 

10 ether. 
6.​ Alice creates new Ethereum account and tops it up with 1 ether using Shapeshift. 
7.​ Alice uses the new account to withdraw 10 ether. Now her 10 ether cannot be traced 

back to originate account. 
8.​ The deposit and withdraw procedure should be using the same private key so key 

safety should be ensured until withdrawing. The key is onetime so it can be dropped 
safely after the redeem. 

 
References: 
 

1.​ A PoC mixing contract: 
https://github.com/ethereum/pyethereum/blob/serenity/ethereum/ringsig.se.py 

2.​ Elliptic curve ariphmetic: 
https://github.com/ethereum/serpent/blob/develop/examples/ecc/jacobian_arith.se 

3.​ EIP 102 proposal for elliptic curve arithmetics opcodes: 
https://github.com/ethereum/EIPs/issues/102 

4.​ EIP 101 proposal for bigint ariphmetics: https://github.com/ethereum/EIPs/issues/101 
5.​ Deployed contract for EC arithmetic (source code attached): 

https://etherscan.io/address/0x600ad7b57f3e6aeee53acb8704a5ed50b60cacd6#cod
e 

6.​ Deployed mixing contract with 3 participant for 1000 wei each (source code 
attached): 
https://etherscan.io/address/0x401e28717a6a35a50938bc7f290f2678fc0a2816#code 

7.​ Public repository for Laundromat project: https://github.com/blackyblack/laundromat 

https://github.com/ethereum/pyethereum/blob/serenity/ethereum/ringsig.se.py
https://github.com/ethereum/serpent/blob/develop/examples/ecc/jacobian_arith.se
https://github.com/ethereum/EIPs/issues/102
https://github.com/ethereum/EIPs/issues/101
https://etherscan.io/address/0x600ad7b57f3e6aeee53acb8704a5ed50b60cacd6#code
https://etherscan.io/address/0x600ad7b57f3e6aeee53acb8704a5ed50b60cacd6#code

